Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38397982

RESUMEN

INTRODUCTION AND PURPOSE: Bicuspid aortic valve (BAV) disease is associated with faster aortic valve degeneration and a high incidence of aortic stenosis (AS). In this study, we aimed to identify differences in the pathophysiology of AS between BAV and tricuspid aortic valve (TAV) patients in a multiomics study integrating metabolomics and transcriptomics as well as clinical data. METHODS: Eighteen patients underwent aortic valve replacement due to severe aortic stenosis: 8 of them had a TAV, while 10 of them had a BAV. RNA sequencing (RNA-seq) and proton nuclear magnetic resonance spectroscopy (1H-NMR) were performed on these tissue samples to obtain the RNA profile and lipid and low-molecular-weight metabolites. These results combined with clinical data were posteriorly compared, and a multiomic profile specific to AS in BAV disease was obtained. RESULTS: H-NMR results showed that BAV patients with AS had different metabolic profiles than TAV patients. RNA-seq also showed differential RNA expression between the groups. Functional analysis helped connect this RNA pattern to mitochondrial dysfunction. Integration of RNA-seq, 1H-NMR and clinical data helped create a multiomic profile that suggested that mitochondrial dysfunction and oxidative stress are key players in the pathophysiology of AS in BAV disease. CONCLUSIONS: The pathophysiology of AS in BAV disease differs from patients with a TAV and has a specific RNA and metabolic profile. This profile was associated with mitochondrial dysfunction and increased oxidative stress.

2.
Pediatr Res ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38273119

RESUMEN

BACKGROUND: Bicuspid aortic valve disease (BAV) is present in 0.5-2% of the population and can promote aortic dilation, eventually leading to fatal consequences. Although some biomarkers have been proposed in adults, no studies have tested these candidates in children. We aimed to evaluate four miRNAs previously described to be related to BAV disease and aortic dilation in adults in a paediatric cohort. METHODS: Eighty participants ≤17 years old (4-17; mean 12) were included. From the BAV group, 40% had a dilated aorta (z score >2). RT‒qPCR were performed in plasma samples to quantify miR-122, miR-130a, miR-486, and miR-718 using the delta-delta Ct method. Functional and enrichment analyses of miR-130a were also performed. RESULTS: miR-130a expression in plasma was found to be significantly lower in BAV patients with a dilated aorta versus nondilated patients (p = 0.008) and healthy TAV controls (p = 0.004). Furthermore, miR-130a expression in plasma was inversely correlated with ascending aorta (r = 0.318, p = 0.004) and aortic root z scores (r = 0.322; p = 0.004). Enrichment analysis showed that miR-130a target genes are related to the TGFß signalling pathway. CONCLUSIONS: miR-130a expression in plasma is decreased in aortic-dilated BAV children compared to nondilated BAV children, helping differentiate low- to high-risk patients. IMPACT: miR-130a expression in plasma is related to aortic dilation in bicuspid aortic valve (BAV) children. To our knowledge, this is the first study that analyses miRNA patterns in bicuspid aortic valve children with aortic dilation. miR-130a expression in plasma could be a biomarker in order to help differentiate low-to high-risk BAV children, which is vitally important for advanced care planning.

3.
J Clin Med ; 12(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36615132

RESUMEN

INTRODUCTION: The bicuspid aortic valve (BAV) confers a high risk of ascending aorta dilatation (AAoD), although its progression seems highly variable. Furthermore, the implication of lipoprotein metabolism and inflammation in the mechanisms that underlie AAoD is not fully established. The aim of this study consisted of evaluating the impact of the lipoprotein and glycoprotein profiles in AAOD as well as its progression in BAV aortopathy. METHODS: Using 1H-nuclear magnetic resonance (1H-NMR), we analyzed and compared the lipoprotein and glycoprotein profiles of plasma samples from 152 BAV patients with dilated and nondilated ascending aorta. Additionally, these profiles were also compared for 119 of these patients who were prospectively followed-up clinically and by echocardiography in the long-term (5 years). Ascending aorta dilation velocity (mm/year) was calculated for this analysis. RESULTS: Several parameters related to the lipoprotein profile including remnant cholesterol, small LDL and IDL-cholesterol were found to be significantly increased in the dilated group compared to those in the nondilated group. The glycoprotein A-nuclear magnetic resonance (NMR) signal, a novel inflammation biomarker, was also observed to be increased in the dilated group. After performing multivariate analysis, remnant cholesterol remained an independent variable related to AAoD. In the long-term follow-up, proatherogenic lipoprotein parameters were related to ascending aorta dilatation velocity ascending. After a lineal regression analysis, non-HDL particles remained as an independent predictor of ascending aorta dilation velocity. CONCLUSIONS: Patients with BAV and AAoD presented a more pro-atherogenic profile assessed by 1H-NMR, especially related to triglyceride-rich lipoproteins. This pro-atherogenic profile seems to contribute to the higher growth rate of ascending aorta diameter.

4.
Front Physiol ; 11: 1015, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973551

RESUMEN

Bicuspid aortic valve (BAV), the most frequent congenital heart malformation, is characterized by the presence of a two-leaflet aortic valve instead of a three-leaflet one. BAV disease progression is associated with valvular dysfunction (in the form of stenosis or regurgitation) and aortopathy, which can lead to aneurysm and aortic dissection. This morphological abnormality modifies valve dynamics and promotes eccentric blood flow, which gives rise to alterations of the flow pattern and wall shear stress (WSS) of the ascending aorta. Recently, evidence of endothelial dysfunction (ED) in BAV disease has emerged. Different studies have addressed a reduced endothelial functionality by analyzing various molecular biomarkers and cellular parameters in BAV patients. Some authors have found impaired functionality of circulating endothelial progenitors in these patients, associating it with valvular dysfunction and aortic dilation. Others focused on systemic endothelial function by measuring artery flow-mediated dilation (FMD), showing a reduced FMD in BAV individuals. Novel biomarkers like increased endothelial microparticles (EMP), which are related to ED, have also been discovered in BAV patients. Finally, latest studies indicate that in BAV, endothelial-to-mesenchymal transition (EndoMT) may also be de-regulated, which could be caused by genetic, hemodynamic alterations, or both. Different hypothesis about the pathology of ED in BAV are nowadays being debated. Some authors blamed this impaired functionality just on genetic abnormalities, which could lead to a pathological aorta. Nevertheless, thanks to the development of new and high-resolution imaging techniques like 4D flow MRI, hemodynamics has gained great attention. Based on latest studies, alterations in blood flow seem to cause proper modification of the endothelial cells (ECs) function and morphology. It also seems to be associated with aortic dilation and decreased vasodilators expression, like nitric oxide (NO). Although nowadays ED in BAV has been reported by many, it is not clear which its main cause may be. Comprehending the pathways that promote ED and its relevance in BAV could help further understand and maybe prevent the serious consequences of this disease. This review will discuss the ED present in BAV, focusing on the latest evidence, biomarkers for ED and potential therapeutic targets (Figure 1).

5.
J Clin Med ; 9(7)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668689

RESUMEN

BACKGROUND: The bicuspid aortic valve (BAV) is the most common cardiac congenital disease and is associated with an increased risk of developing ascending aorta dilation; which can have fatal consequences. Currently; no established risk biomarkers exist to facilitate the diagnosis and prognosis of BAV. METHODS: Using an untargeted metabolomic approach; we identified the levels of metabolites in plasma samples and compared them depending on the bicuspid or tricuspid morphology of the aortic valve. Including those patients with ascending aortic dilation and/or aortic stenosis (n = 212), we analyzed the role possibly played by alpha-Tocopherol in BAV disease; considering its association with the pathophysiological characteristics of BAV and biomarkers related to inflammation, oxidative stress and endothelial damage, as well as characteristics related to alpha-Tocopherol functionality and metabolism. RESULTS: We found that BAV patients; especially those with ascending aortic dilation; presented lower antioxidant capacity; as determined by decreased plasma levels of alpha-Tocopherol; paraoxonase 1 and high-density lipoprotein (HDL), as well as increased levels of C-reactive protein (CRP; a biomarker of inflammation) and endothelial microparticles (EMPs; an endothelial damage biomarker). By applying random forest analyses; we evaluated the significant screening capacity of alpha-Tocopherol; CRP and EMPs to classify patients depending on the morphology of the aortic valve. DISCUSSION: Our findings support the role of decreased antioxidant capacity; increased inflammation and endothelial damage in the pathogenesis of BAV and the progression of aortic dilation. Moreover; determining the plasma levels of alpha-Tocopherol; CRP and EMPs could improve BAV diagnosis in large populations.

6.
Stem Cell Res Ther ; 11(1): 106, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32143690

RESUMEN

BACKGROUND: Critical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities. Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization. Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues. METHODS: Balb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 µl physiological serum (SC, n:8) or 5 × 105 human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related. RESULTS: Administration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown. CONCLUSIONS: Our results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network.


Asunto(s)
Neovascularización Fisiológica , Enfermedad Arterial Periférica , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Isquemia/terapia , Ratones , Ratones Desnudos , Enfermedad Arterial Periférica/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...