Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 46(16): 3933-3936, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34388778

RESUMEN

A novel temperature-insensitive optical curvature sensor has been proposed and demonstrated. The sensor is fabricated by inscribing fiber Bragg gratings with short lengths into a piece of strongly coupled multicore fiber (SCMCF) and spliced to the conventional single-mode fiber. Due to the two supermodes being supported by the SCMCF, two resonance peaks, along with a deep notch between them, were observed in the reflection spectrum. The experimental results show that the depth of the notch changes with the curvature with a sensitivity up to 15.9dB/m-1 in a lower curvature range. Besides, thanks to the unique property of the proposed sensor, the notch depth barely changes with temperature. Based on the intensity demodulation of the notch depth, the temperature-insensitive curvature sensor is achieved with the cross sensitivity between the temperature, and the curvature is as low as 0.001m-1/∘C.

2.
Opt Lett ; 46(9): 2224-2227, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33929460

RESUMEN

In this Letter, a long-range optical fiber displacement sensor based on an extrinsic Fabry-Perot interferometer (EFPI) built with a strongly coupled multicore fiber (SCMCF) is proposed and demonstrated. To fabricate the device, 9.2 mm of SCMCF was spliced to a conventional single-mode fiber (SMF). The sensor reflection spectrum is affected by super-mode interference in the SCMCF and the interference produced by the EFPI. Displacement of the SMF-SCMCF tip with respect to a reflecting surface produces quantifiable changes in the amplitude and period of the interference pattern in the reflection spectrum. Since the multicore fiber is an efficient light collecting area, sufficient signal intensity can be obtained for displacements of several centimeters. By analyzing the interference pattern in the Fourier domain, it was possible to measure displacements up to 50 mm with a resolution of approximately 500 nm. To our knowledge, this is the first time that a multicore fiber has been used to build a displacement sensor. The dynamic measurement range is at least seven times larger than that achieved with an EFPI built with a conventional SMF. Moreover, the SMF-SCMCF tip is robust and easy to fabricate and replicate.

3.
Sci Rep ; 10(1): 4912, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188918

RESUMEN

Deep-UV (DUV) supercontinuum (SC) sources based on gas-filled hollow-core fibers constitute perhaps the most viable solution towards ultrafast, compact, and tunable lasers in the UV spectral region, which can even also extend into the mid-infrared (IR). Noise and spectral stability of such broadband sources are key parameters that define their true potential and suitability towards real-world applications. In order to investigate the spectral stability and noise levels in these fiber-based DUV sources, we generate an SC spectrum that extends from 180 nm (through phase-matched dispersive waves - DWs) to 4 µm by pumping an argon-filled hollow-core anti-resonant fiber at a mid-IR wavelength of 2.45 µm. We characterize the long-term stability of the source over several days and the pulse-to-pulse relative intensity noise (RIN) of the DW at 275 nm. The results indicate no sign of spectral degradation over 110 hours, but the RIN of the DW pulses at 275 nm is found to be as high as 33.3%. Numerical simulations were carried out to investigate the spectral distribution of the RIN and the results confirm the experimental measurements and that the poor noise performance is due to the high RIN of the mid-IR pump laser, which was hitherto not considered in numerical modelling of these sources. The results presented herein provide an important step towards an understanding of the noise mechanism underlying such complex light-gas nonlinear interactions and demonstrate the need for pump laser stabilization.

4.
Opt Express ; 26(19): 24357-24371, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30469556

RESUMEN

In this work, we numerically investigate an experimentally feasible design of a tapered Ne-filled hollow-core anti-resonant fiber and we report multi-stage generation of dispersive waves (DWs) in the range 90-120 nm, well into the extreme ultraviolet (UV) region. The simulations assume a 800 nm pump pulse with 30 fs 10 µJ pulse energy, launched into a 9 bar Ne-filled fiber with a 34 µm initial core diameter that is then tapered to a 10 µm core diameter. The simulations were performed using a new model that provides a realistic description of both loss and dispersion of the resonant and anti-resonant spectral bands of the fiber, and also importantly includes the material loss of silica in the UV. We show that by first generating solitons that emit DWs in the far-UV region in the pre-taper section, optimization of the following taper structure can allow re-collision with the solitons and further up-conversion of the far-UV DWs to the extreme-UV with energies up to 190 nJ in the 90-120 nm range. This process provides a new way to generate light in the extreme-UV spectral range using relatively low gas pressure.

5.
Sci Rep ; 8(1): 8897, 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891993

RESUMEN

We present a new technique allowing the fabrication of large modal count photonic lanterns for space-division multiplexing applications. We demonstrate mode-selective photonic lanterns supporting 10 and 15 spatial channels by using graded-index fibres and microstructured templates. These templates are a versatile approach to position the graded-index fibres in the required geometry for efficient mode sampling and conversion. Thus, providing an effective scalable method for large number of spatial modes in a repeatable manner. Further, we demonstrate the efficiency and functionality of our photonic lanterns for optical communications. Our results show low insertion and mode dependent losses, as well as enhanced mode selectivity when spliced to few mode transmission fibres. These photonic lantern mode multiplexers are an enabling technology for future ultra-high capacity optical transmission systems.

6.
Opt Lett ; 43(6): 1303-1306, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29543277

RESUMEN

We demonstrate a simple approach based on a photonic lantern spatial-mode multiplexer and a few-mode fiber for optical and manipulation of multiple microspheres. Selective generation of linearly polarized (LP) fiber modes provides light patterns useful for trapping one or multiple microparticles. Furthermore, rotation of the particles can be achieved by switching between degenerate LP modes, as well as through polarization rotation of the input light. Our results show that emerging fiber optic devices such as photonic lanterns can provide a versatile and compact means for developing optical fiber traps.

7.
Opt Express ; 26(25): 32777-32787, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30645440

RESUMEN

We propose and experimentally demonstrate an intra-cavity transverse mode-switchable fiber laser based on a mode-selective photonic lantern and a few-mode Er-doped fiber amplifier. The six lowest-order LP modes can lase independently and are switchable by changing the input port of the photonic lantern. We measured the slope efficiency, mode intensity profile, and optical spectrum of each lasing mode. In addition, we demonstrate donut-shaped LP11 and LP21 modes using incoherent superposition and simultaneous lasing of the two degenerate modes.

8.
Opt Lett ; 39(15): 4309-12, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25078164

RESUMEN

A novel high temperature sensor based on customized multicore fiber (MCF) is proposed and experimentally demonstrated. The sensor consists of a short, few-centimeter-long segment of MCF spliced between two standard single-mode fibers. Due to interference effects, the transmission spectrum through this fiber chain features sharp and deep notches. Exposing the MCF segment to increasing temperatures of up to 1000°C results in a shift of the transmission notches toward longer wavelengths with a slope of approximately 29 pm/°C at lower temperatures and 52 pm/°C at higher temperatures, enabling temperature measurements with high sensitivity and accuracy. Due to its compact size and mechanical rigidity, the MCF sensor can be subjected to harsh environments. The fabrication of the MCF sensor is straightforward and reproducible, making it an inexpensive fiber device.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...