Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NPJ Microgravity ; 10(1): 64, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862554

RESUMEN

Short-term spaceflight is commonly perceived as posing minimal risk to human health and performance. However, despite their duration, short-term flights potentially induce acute physiological changes that create risk to crews. One such change is dehydration (primarily body water loss) due to a heat-stressed environment. Such loss, if severe and prolonged, can lead to decrements in performance as well as increase the risk of more serious medical conditions. Though the general mechanisms of dehydration are broadly understood, the rate and extent of dehydration in short-term spaceflight has not been characterized. Combining data from the six spaceflights of the US Mercury program with a causal diagram illustrating the mechanisms of dehydration, we fit a path model to estimate the causal effects for all pathways in the causal model. Results demonstrate that Mercury astronauts experienced some degree of dehydration across the range of suited time and that the relationship between suited time and dehydration appears to be logarithmic. We discuss causal interpretations of the results and how the results from this and similar analyses can inform countermeasure development for short-term spaceflight.

2.
NPJ Microgravity ; 9(1): 72, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679359

RESUMEN

This paper describes updates to NASA's approach for assessing and mitigating spaceflight-induced risks to human health and performance. This approach continues to evolve to meet dynamically changing risk environments: lunar missions are currently being designed and the ultimate destination will be Mars. Understanding the risks that astronauts will face during a Mars mission will depend on building an evidence base that informs not only how the humans respond to the challenges of the spaceflight environment, but also how systems and vehicles can be designed to support human capabilities and limitations. This publication documents updates to the risk management process used by the Human System Risk Board at NASA and includes changes to the likelihood and consequence matrix used by the board, the design reference mission categories and parameters, and the standardized evaluation of the levels of evidence that the board accepts when setting risk posture. Causal diagramming, using directed acyclic graphs, provides all stakeholders with the current understanding of how each risk proceeds from a spaceflight hazard to a mission-level outcome. This standardized approach enables improved communication among stakeholders and delineates how and where more knowledge can improve perspective of human system risks and which countermeasures can best mitigate these risks.

3.
NPJ Microgravity ; 9(1): 37, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193709

RESUMEN

Ocular trauma or other ocular conditions can be significantly debilitating in space. A literature review of over 100 articles and NASA evidence books, queried for eye related trauma, conditions, and exposures was conducted. Ocular trauma and conditions during NASA space missions during the Space Shuttle Program and ISS through Expedition 13 in 2006 were reviewed. There were 70 corneal abrasions, 4 dry eyes, 4 eye debris, 5 complaints of ocular irritation, 6 chemical burns, and 5 ocular infections noted. Unique exposures on spaceflight, such as foreign bodies, including celestial dust, which may infiltrate the habitat and contact the ocular surface, as well as chemical and thermal injuries due to prolonged CO2 and heat exposure were reported. Diagnostic modalities used to evaluate the above conditions in space flight include vision questionnaires, visual acuity and Amsler grid testing, fundoscopy, orbital ultrasound, and ocular coherence tomography. Several types of ocular injuries and conditions, mostly affecting the anterior segment, are reported. Further research is necessary to understand the greatest ocular risks that astronauts face and how better we can prevent, but also diagnose and treat these conditions in space.

4.
Biomedicines ; 10(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36140288

RESUMEN

As part of the risk management plan for human system risks at the US National Aeronautics and Space Administration (NASA), the NASA Human Systems Risk Board uses causal diagrams (in the form of directed, acyclic graphs, or DAGs) to communicate the complex web of events that leads from exposure to the spaceflight environment to performance and health outcomes. However, the use of DAGs in this way is relatively new at NASA, and thus far, no method has been articulated for testing their veracity using empirical data. In this paper, we demonstrate a set of procedures for doing so, using (a) a DAG related to the risk of bone fracture after exposure to spaceflight; and (b) four datasets originally generated to investigate this phenomenon in rodents. Tests of expected marginal correlation and conditional independencies derived from the DAG indicate that the rodent data largely agree with the structure of the diagram. Incongruencies between tests and the expected relationships in one of the datasets are likely explained by inadequate representation of a key DAG variable in the dataset. Future directions include greater tie-in with human data sources, including multiomics data, which may allow for more robust characterization and measurement of DAG variables.

5.
J Womens Health (Larchmt) ; 31(8): 1145-1155, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35549913

RESUMEN

Background: In this study sex-differences in medical outcomes during spaceflight are reviewed and probabilistic risk assessment (PRA) is used to assess the impact on spaceflight missions of varying lengths. Materials and Methods: We use PRA to simulate missions of 42 days, 6 months, and 2.5 years. We model medical outcomes using three crews: two men and two women, four women, or four men. Total medical events (TME), crew health index (CHI), probability (0-1) of medical evacuation (pEVAC), probability of loss of crew life (pLOCL), and influential medical conditions were determined. Results: No differences were seen in any metric for the 42-day mission. There were no differences seen for any mission length, in any crew, for TME, CHI, pLOCL, or environmental causes of pEVAC. Sex-dependent differences are seen for rates of nonemergent pEVAC during the 6 month and 2.5-year missions, where women have a higher pEVAC in the 182-day (0.0388 vs. 0.0354) and 2.5-year missions (0.350 vs. 0.228). These differences were driven by higher incidence of partially treated urinary tract infection (UTI). In the 2.5 year mission, with resupply of medical resources, the influence of UTI in women on pEVAC decreases (0.35-0.11). Conclusion: Although resupply is unlikely for deep space missions, modeled results suggest that sex-specific medical needs can be readily managed through preventive measures and inclusion of appropriate medical capabilities. Within its many limitations, PRA is a useful tool to estimate medical risks in unique environments where only expert opinion was previously available.


Asunto(s)
Vuelo Espacial , Astronautas , Femenino , Humanos , Masculino , Probabilidad , Medición de Riesgo/métodos , Vuelo Espacial/métodos
6.
NPJ Microgravity ; 8(1): 8, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361776

RESUMEN

NASA and commercial spaceflight companies will soon be retuning humans to the Moon and then eventually sending them on to Mars. These distant planetary destinations will pose new risks-in particular for the health of the astronaut crews. The bulk of the evidence characterizing human health and performance in spaceflight has come from missions in Low Earth Orbit. As missions last longer and travel farther from Earth, medical risk is expected to contribute an increasing proportion of total mission risk. To date, there have been no reliable estimates of how much. The Integrated Medical Model (IMM) is a Probabilistic Risk Assessment (PRA) Monte-Carlo simulation tool developed by NASA for medical risk assessment. This paper uses the IMM to provide an evidence-based, quantified medical risk estimate comparison across different spaceflight mission durations. We discuss model limitations and unimplemented capabilities providing insight into the complexity of medical risk estimation for human spaceflight. The results enable prioritization of medical needs in the context of other mission risks. These findings provide a reasonable bounding estimate for medical risk in missions to the Moon and Mars and hold value for risk managers and mission planners in performing cost-benefit trades for mission capability and research investments.

7.
Surg Innov ; 28(5): 573-581, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33339485

RESUMEN

Introduction. Prophylactic surgery before spaceflight may eliminate the risk of appendicitis and cholecystitis in astronauts on deep space missions. However, even minimally invasive surgery increases the risk of small bowel obstruction (SBO). Probabilistic risk assessment (PRA) is a method that can be used to estimate the benefits and risks of prophylactic surgery. Methods. Risks of appendicitis and cholecystitis during a 2.5-year Mars mission are compared to the risk of SBO after laparoscopic removal of the appendix, gallbladder, or both. A PRA model using Monte Carlo methodology was used to forecast the risks. Results. Prophylactic appendectomy and cholecystectomy combined, conferred an increased probability of medical evacuation (pEVAC) due to SBO as compared to the no surgery group. A slightly higher probability for the loss of crew life (pLOCL) was found in the no surgery group when compared to the cases in which either prophylactic appendectomy alone, or appendectomy plus cholecystectomy are performed. Discussion. The need for medical evacuation can be viewed as a potential risk for death in the context of a space mission where evacuation is not possible. Because of the higher pEVAC due to SBO and relatively small benefit in the reduction of pLOCL in the prophylactic surgery groups, this analysis does not support the prophylactic removal of appendix and/or gallbladder for spaceflight. Future advances in surgical or medical technique or mission medical capabilities may change these results. This work demonstrates the utility of PRA in providing quantitative answers to "what if" questions where limited information is available.


Asunto(s)
Apendicitis , Vuelo Espacial , Apendicectomía/efectos adversos , Astronautas , Humanos , Medición de Riesgo
8.
Aerosp Med Hum Perform ; 91(7): 543-564, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32591031

RESUMEN

INTRODUCTION: As NASA and its international partners, as well as the commercial spaceflight industry, prepare for missions of increasing duration and venturing outside of low-Earth orbit, mitigation of medical risk is of high priority. Gynecologic considerations constitute one facet of medical risk for female astronauts. This manuscript will review the preflight, in-flight, and postflight clinical evaluation, management, and prevention considerations for reducing gynecologic and reproductive risks in female astronauts.METHODS: Relevant gynecological articles from databases including Ovid, Medline, Web of Science, various medical libraries, and NASA archives were evaluated for this review. In particular, articles addressing preventive measures or management of conditions in resource-limited environments were evaluated for applicability to future long-duration exploration spaceflight.RESULTS: Topics including abnormal uterine bleeding, anemia, bone mineral density, ovarian cysts, venous thromboembolism, contraception, fertility, and health maintenance were reviewed. Prevention and treatment strategies are discussed with a focus on management options that consider limitations of onboard medical capabilities.DISCUSSION: Long-duration exploration spaceflight will introduce new challenges for maintenance of gynecological and reproductive health. The impact of the space environment outside of low-Earth orbit on gynecological concerns remains unknown, with factors such as increased particle radiation exposure adding complexity and potential risk. While the most effective means of minimizing the impact of gynecologic or reproductive pathology for female astronauts is screening and prevention, gynecological concerns can arise unpredictably as they do on Earth. Careful consideration of gynecological risks and potential adverse events during spaceflight is a critical component to risk analysis and preventive medicine for future exploration missions.Steller JG, Blue RS, Burns R, Bayuse TM, Antonsen EL, Jain V, Blackwell MM, Jennings RT. Gynecologic risk mitigation considerations for long-duration spaceflight. Aerosp Med Hum Perform. 2020; 91(7):543-564.


Asunto(s)
Astronautas , Enfermedades Urogenitales Femeninas/prevención & control , Exposición a la Radiación , Salud Reproductiva , Vuelo Espacial , Femenino , Humanos , Medición de Riesgo , Factores de Tiempo
9.
Aerosp Med Hum Perform ; 90(11): 966-977, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31666159

RESUMEN

INTRODUCTION: Analysis of historical solar particle events (SPEs) provides context for some understanding of acute radiation exposure risk to astronauts who will travel outside of low-Earth orbit. Predicted levels of radiation exposures to exploration crewmembers could produce some health impacts, including nausea, emesis, and fatigue, though more severe clinical manifestations are unlikely. Using current models of anticipated physiological sequelae, we evaluated the clinical challenges of managing radiation-related clinical concerns during exploration spaceflight.METHODS: A literature review was conducted to identify terrestrial management standards for radiation-induced illnesses, focusing on prodromal symptom treatment. Terrestrial management was compared to current spaceflight medical capabilities to identify gaps and highlight challenges involved in expanding capabilities for future exploration spaceflight.RESULTS: Current spaceflight medical resources, such as those found on the International Space Station, may be sufficient to manage some aspects of radiation-induced illness, although effective treatment of all potential manifestations would require substantial expansion of capabilities. Terrestrial adjunctive therapies or more experimental treatments are unavailable in current spaceflight medical capabilities but may have a role in future management of acute radiation exposure.DISCUSSION: Expanded medical capabilities for managing radiation-induced illnesses could be included onboard future exploration vehicles. However, this would require substantial research, time, and funding to reach flight readiness, and vehicle limitations may restrict such capabilities for exploration missions. The benefits of including expanded capabilities should be weighed against the likelihood of significant radiation exposure and extensive mission design constraints.Blue RS, Chancellor JC, Suresh R, Carnell LS, Reyes DP, Nowadly CD, Antonsen EL. Challenges in clinical management of radiation-induced illnesses during exploration spaceflight. Aerosp Med Hum Perform. 2019; 90(11):966-977.


Asunto(s)
Radiación Cósmica/efectos adversos , Enfermedades Profesionales/terapia , Exposición a la Radiación/efectos adversos , Traumatismos por Radiación/terapia , Vuelo Espacial , Astronautas , Humanos , Enfermedades Profesionales/etiología , Exposición Profesional/efectos adversos , Probabilidad , Traumatismos por Radiación/etiología
10.
Transfusion ; 59(10): 3077-3083, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31490558

RESUMEN

BACKGROUND: Astronauts on exploration missions may be at risk for traumatic injury and medical conditions that lead to life threatening hemorrhage. Resuscitation protocols are limited by the austere conditions of spaceflight. Solutions may be found in low-resource terrestrial settings. The existing literature on alternative blood product administration and walking blood banks was evaluated for applicability to spaceflight. STUDY DESIGN AND METHODS: A literature review was done using PubMed and Google Scholar. References were crosschecked for additional publications not identified using the initial search terms. Twenty-seven articles were identified, including three controlled trials, six retrospective cohort analyses, 15 reviews, one case report, and two experimental studies. RESULTS: Solutions to blood transfusion in austere settings include lyophilized blood products, hemoglobin-based oxygen carriers (HBOCs), and fresh whole blood. Many of these products are investigational. Protocols for walking blood banks include methods for screening and activating donors, transfusion, and monitoring for adverse reactions. Microgravity and mission limitations create additional challenges for transfusion, including baseline physiologic changes, difficulty reconstituting lyophilized products, risk of air emboli during transfusion, equipment constraints, and limited evacuation and surgical options. CONCLUSION: Medical planning for space exploration should consider the possibility of acute blood loss. A model for "floating" blood banks based on terrestrial walking blood bank protocols from austere environments is presented, with suggestions for future development. Constraints on volume, mass, storage, and crew, present challenges to blood transfusion in space and must be weighed against the benefits of expanding medical capabilities.


Asunto(s)
Bancos de Sangre , Transfusión Sanguínea , Hemorragia/terapia , Resucitación , Vuelo Espacial , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...