Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Microbiol Res ; 164(2): 149-56, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-17317126

RESUMEN

The plant-beneficial bacterium Azospirillum brasilense can swim in liquids and swarm or migrate with the formation of microcolonies in soft media. To get closer to understanding the influence of natural environments on A. brasilense motility, we studied the individual and social movement of the bacterium in the presence of various plant lectins. The lectins with specificity for N-acetyl-beta-d-glucosamine oligomers (wheat germ, Solanum tuberosum and Ulex europeus agglutinins) decreased A. brasilense swimming speed and induced the formation of branched-granular colonies instead of the swarming rings. These effects seemed to be a consequence of specific interactions between the agglutinins and the lectin-binding polymers present in the A. brasilense cell envelope. Concanavalin A (with an affinity for terminal alpha-d-mannosyl and alpha-d-glucosyl residues) and Phaseolus vulgaris phytohemagglutinin P (with unknown specificity) almost did not affect the motility of A. brasilense.


Asunto(s)
Azospirillum brasilense/fisiología , Quimiotaxis/efectos de los fármacos , Lectinas de Plantas/farmacología , Azospirillum brasilense/efectos de los fármacos
2.
Microb Ecol ; 56(4): 615-24, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18437449

RESUMEN

For the rhizobacterium Azospirillum brasilense, the optimal nutritional range of C:N ratios corresponds to the presence of malate (ca. 3 to 5 g l(-1) of its sodium salt) and ammonium (ca. 0.5 to 3 g l(-1) of NH4Cl) as preferred carbon and nitrogen sources, respectively. This microaerophilic aerotactic bacterium is known to have a narrow optimal oxygen concentration range of ca. 3 to 5 microM, which is 1.2% to 2% of oxygen solubility in air-saturated water under normal conditions. In this work, the effects of stress conditions (bound-nitrogen deficiency related to a high C:N ratio in the medium; excess of oxygen) on aerobically grown A. brasilense Sp245, a native wheat-associated endophyte, were investigated in the absence and presence of wheat germ agglutinin (WGA, plant stress protein and a molecular host-plant signal for the bacterium) using FTIR spectroscopy of whole cells in the diffuse reflectance mode (DRIFT). The nutritional stress resulted in the appearance of prominent spectroscopic signs of poly-3-hydroxybutyrate (PHB) accumulation in the bacterial cells; in addition, splitting of the amide I band related to bacterial cellular proteins indicated some stress-induced alterations in their secondary structure components. Similar structural changes were observed in the presence of nanomolar WGA both in stressed A. brasilense cells and under normal nutritional conditions. Comparative analysis of the data obtained and the relevant literature data indicated that the stress conditions applied (which resulted in the accumulation of PHB involved in stress tolerance) and/or the presence of nanomolar concentrations of WGA induced synthesis of bacterial cell-surface (glyco)proteins rich in beta-structures, that could be represented by hemagglutinin and/or porin.


Asunto(s)
Azospirillum brasilense/efectos de los fármacos , Nitrógeno/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Aglutininas del Germen de Trigo/farmacología , Aerobiosis , Azospirillum brasilense/crecimiento & desarrollo , Azospirillum brasilense/metabolismo , Hidroxibutiratos/metabolismo , Nitrógeno/farmacología , Poliésteres/metabolismo
3.
Anal Chim Acta ; 573-574: 445-52, 2006 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-17723559

RESUMEN

In biosciences and biotechnology, the expanding application of physicochemical approaches using modern instrumental techniques is an efficient strategy to obtain valuable and often unique information at the molecular level. In this work, we applied a combination of vibrational (Fourier transform infrared (FTIR), FT-Raman) spectroscopic techniques, useful in overall structural and compositional analysis of bacterial cells of the rhizobacterium Azospirillum brasilense, with 57Co emission Mössbauer spectroscopy (EMS) used for sensitive monitoring of metal binding and further transformations in live bacterial cells. The information obtained, together with ICP-MS analyses for metals taken up by the bacteria, is useful in analysing the impact of the environmental conditions (heavy metal stress) on the bacterial metabolism and some differences in the heavy metal stress-induced behaviour of non-endophytic (Sp7) and facultatively endophytic (Sp245) strains. The results show that, while both strains Sp7 and Sp245 take up noticeable and comparable amounts of heavy metals from the medium (0.12 and 0.13 mg Co, 0.48 and 0.44 mg Cu or 4.2 and 2.1 mg Zn per gram of dry biomass, respectively, at a metal concentration of 0.2 mM in the medium), their metabolic responses differ essentially. Whereas for strain Sp7 the FTIR measurements showed significant accumulation of polyhydroxyalkanoates as storage materials involved in stress endurance, strain Sp245 did not show any major changes in cellular composition. Nevertheless, EMS measurements showed rapid binding of cobalt(II) by live bacterial cells (chemically similar to metal binding by dead bacteria) and its further transformation in the live cells within an hour.

4.
J Trace Elem Med Biol ; 19(1): 91-5, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16240678

RESUMEN

The plant-associated nitrogen-fixing rhizobacterium Azospirillum brasilense attracts world-wide attention owing to its plant growth-promoting activities. Among hundreds of its strains known up to date, wild-type strain Sp245 has been proved to be capable of colonising both the plant-root interior and exterior (i.e. a facultative endophyte), whereas others are non-endophytes colonising the root surface only. Thus, the different ecological niches occupied by these strains in the rhizosphere suggest that their responses to environmental conditions might differ as well. In this study, responses of A. brasilense strains Sp245 and Sp7 to several heavy metals (Co2+, Cu2+, Zn2+), present in the medium at tolerable concentrations (up to 0.2 mmol/l) and taken up by the bacteria, were compared. Fourier transform infrared (FTIR) spectroscopy was used for controlling the compositional features of whole cells. The results obtained show that in strain Sp7 (non-endophyte) the heavy metals induced an enhanced accumulation of polyester compounds (poly-3-hydroxybutyrate; PHB). In contrast, the response of the endophytic strain Sp245 to heavy metal uptake was found to be much less pronounced. These dissimilarities in their behaviour may be caused by different adaptation abilities of these strains to stress conditions owing to their different ecological status. It was also found that adding 0.2 mmol/l Cu2+ or Cd2+ in the culture medium resulted in noticeably reducing the levels of indole-3-acetic acid (IAA, auxin) produced by both the strains of the bacterium. This can directly affect the efficiency of associative plant-bacterial symbioses involving A. brasilense in heavy-metal-contaminated soil.


Asunto(s)
Azospirillum brasilense/metabolismo , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Azospirillum brasilense/química , Ácidos Indolacéticos/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
5.
Biometals ; 17(4): 457-66, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15259367

RESUMEN

Interaction of cobalt(II) at micromolar concentrations with live cells of the plant-growth-promoting rhizobacterium Azospirillum brasilense (strain Sp245) and further transformations of the metal cation were monitored using 57Co emission Mössbauer spectroscopy (EMS). Cell suspensions of the bacterial culture (2.4 x 10(8) cells ml(-1)) were doped with radioactive 57CoCl2 (1 mCi; final concentration 2 x 10(-6) M 57Co2+), kept under physiological conditions for various periods of time (from 2 min up to 1 hour) and then rapidly frozen in liquid nitrogen. Analysis of emission Mössbauer spectra of the frozen aqueous suspensions of the bacterial cell samples shows that the primary absorption of cobalt(II) at micromolar concentrations by the bacterial cells is rapid and virtually complete, giving at least two major forms of cobalt(II) species bound to the cells. Within an hour, the metal is involved in further metabolic transformations reflected by changes occurring in the spectra. The Mössbauer parameters calculated from the EMS data by statistical treatment were different for suspensions of live and dead (thermally killed) bacterial cells that had been in contact with 57Co2+ for 1 h, as well as for the cell-free culture medium containing the same concentration of 57Co2+. Chemical after-effects of the nuclear transition (57Co --> 5 7Fe), which provide additional information on the chemical environment of metal ions, are also considered. The data presented demonstrate that EMS is a valuable tool for monitoring the chemical state of cobalt species in biological matter providing information at the atomic level in the course of its uptake and/or metabolic transformations.


Asunto(s)
Azospirillum brasilense/citología , Azospirillum brasilense/metabolismo , Cobalto/metabolismo , Plantas/microbiología , Microbiología del Suelo , Biotransformación , Espectroscopía de Mossbauer
6.
Biopolymers ; 74(1-2): 64-8, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15137096

RESUMEN

CD spectroscopic study of the secondary structure of partly adenylylated glutamine synthetase (GS) of the bacterium Azospirillum brasilense showed both the native and cation-free (EDTA-treated) enzyme to be highly structured (58 and 49% as alpha-helices, 10 and 20% as beta-structure, respectively). Mg(2+), Mn(2+), or Co(2+), when added to the native GS, had little effect on its CD spectrum, whereas their effects on the cation-free GS were more pronounced. Emission ((57)Co) Mössbauer spectroscopic (EMS) study of (57)Co(2+)-doped cation-free GS in frozen solution and in the dried state gave similar spectra and Mössbauer parameters for the corresponding spectral components, reflecting the ability of the Co(2+)-enzyme complex to retain its properties upon drying. The EMS data show that (a) A. brasilense GS has 2 cation-binding sites per active center and (b) one site has a higher affinity to Co(2+) than the other, in line with the data on other bacterial GSs.


Asunto(s)
Azospirillum brasilense/enzimología , Glutamato-Amoníaco Ligasa/química , Azospirillum/enzimología , Cationes , Dicroismo Circular , Cobalto/química , Magnesio/química , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Espectrofotometría , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...