Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 12: 800395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402296

RESUMEN

During the acute phase of Chagas disease, Trypanosoma cruzi circulation through the bloodstream leads to high tissue parasitism in the host. In primary lymphoid organs, progenitor cell reduction paralleled transient immunosuppression. Herein we showed that acute oral infection in mice promotes diffuse parasitism in bone marrow cells at 14 and 21 days post-infection (dpi), with perivascular regions, intravascular regions, and regions near the bone being target sites of parasite replication. Phenotypic analysis of hematopoietic differentiation in the bone marrow of infected mice showed that the cell number in the tissue is decreased (lineage-negative and lineage-positive cells). Interestingly, analysis of hematopoietic branching points showed that hematopoietic stem and progenitor cells (HSPCs) were significantly increased at 14 dpi. In addition, the pool of progenitors with stem plasticity (HSC-MPP3), as well as multipotent progenitors (MPPs) such as MPP4, also showed this pattern of increase. In contrast, subsequent progenitors that arise from MPPs, such as common lymphoid progenitors (CLPs), lymphoid-primed MPPs (LMPPs), and myeloid progenitors, were not enhanced; conversely, all presented numeric decline. Annexin V staining revealed that cell death increase in the initial hematopoietic branching point probably is not linked to CLPs and that myeloid progenitors decreased at 14 and 21 dpi. In parallel, our investigation provided clues that myeloid progenitor decrease could be associated with an atypical expression of Sca-1 in this population leading to a remarkable increase on LSK-like cells at 14 dpi within the HSPC compartment. Finally, these results led us to investigate HSPC presence in the spleen as a phenomenon triggered during emergency hematopoiesis due to mobilization or expansion of these cells in extramedullary sites. Splenocyte analysis showed a progressive increase in HSPCs between 14 and 21 dpi. Altogether, our study shows that the bone marrow is a target tissue in T. cruzi orally infected mice, leading to a hematopoietic disturbance with LSK-like cell bias accounting on HSPCs possibly affecting myeloid progenitor numbers. The LMPP and CLP reduction converges with defective thymocyte development. Lastly, it is tempting to speculate that the extramedullary hematopoiesis seen in the spleen is a mechanism involved in the hematological maintenance reported during the acute phase of oral T. cruzi infection.


Asunto(s)
Enfermedad de Chagas , Hematopoyesis Extramedular , Trypanosoma cruzi , Animales , Diferenciación Celular , Linaje de la Célula , Hematopoyesis/fisiología , Ratones , Ratones Endogámicos C57BL
2.
Mem Inst Oswaldo Cruz ; 115: e190364, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32130371

RESUMEN

Oral transmission of Chagas disease has been increasing in Latin American countries. The present study aimed to investigate changes in hepatic function, coagulation factor levels and parasite load in human acute Chagas disease (ACD) secondary to oral Trypanosoma cruzi transmission. Clinical and epidemiological findings of 102 infected individuals attended in the State of Pará from October 2013 to February 2016 were included. The most common symptoms were fever (98%), asthenia (83.3%), face and limb edema (80.4%), headache (74.5%) and myalgia (72.5%). The hepatic enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) of 30 ACD patients were higher compared with controls, and this increase was independent of the treatment with benznidazole. Moreover, ACD individuals had higher plasma levels of activated protein C and lower levels of factor VII of the coagulation cascade. Patients with the highest parasite load had also the most increased transaminase levels. Also, ALT and AST were associated moderately (r = 0.429) and strongly (r = 0.595) with parasite load respectively. In conclusion, the present study raises the possibility that a disturbance in coagulation and hepatic function may be linked to human ACD.


Asunto(s)
Alanina Transaminasa/sangre , Aspartato Aminotransferasas/sangre , Enfermedad de Chagas/fisiopatología , Factor VIIa/análisis , Hígado/fisiopatología , Proteína C/análisis , Enfermedad Aguda , Adulto , Biomarcadores/sangre , Brasil/epidemiología , Estudios de Casos y Controles , Enfermedad de Chagas/sangre , Enfermedad de Chagas/enzimología , Enfermedad de Chagas/transmisión , Femenino , Humanos , Hígado/enzimología , Masculino , Persona de Mediana Edad , Carga de Parásitos , Estudios Prospectivos
3.
Front Immunol ; 10: 1073, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139194

RESUMEN

Oral transmission of Trypanosoma cruzi, the etiologic agent of Chagas disease, is presently the most important route of infection in Brazilian Amazon. Other South American countries have also reported outbreaks of acute Chagas disease associated with food consumption. A conspicuous feature of this route of transmission is presenting symptoms such as facial and lower limbs edema, in some cases bleeding manifestations and risk of thromboembolism are evident. Notwithstanding, studies that address this route of infection are largely lacking regarding its pathogenesis and, more specifically, the crosstalk between immune and hemostatic systems. Here, BALB/c mice were orally infected with metacyclic trypomastigotes of T. cruzi Tulahuén strain and used to evaluate the cytokine response, primary and secondary hemostasis during acute T. cruzi infection. When compared with control uninfected animals, orally infected mice presented higher pro-inflammatory cytokine (TNF-α, IFN-γ, and IL-6) serum levels. The highest concentrations were obtained concomitantly to the increase of parasitemia, between 14 and 28 days post-infection (dpi). Blood counts in the oral infected group revealed concomitant leukocytosis and thrombocytopenia, the latter resulting in increased bleeding at 21 dpi. Hematological changes paralleled with prolonged activated partial thromboplastin time, Factor VIII consumption and increased D-dimer levels, suggest that oral T. cruzi infection relies on disseminated intravascular coagulation. Remarkably, blockade of the IL-6 receptor blunted hematological abnormalities, revealing a critical role of IL-6 in the course of oral infection. These results unravel that acute T. cruzi oral infection results in significant alterations in the hemostatic system and indicates the relevance of the crosstalk between inflammation and hemostasis in this parasitic disease.


Asunto(s)
Enfermedad de Chagas/inmunología , Hemostasis , Interleucina-6/fisiología , Enfermedad Aguda , Animales , Enfermedad de Chagas/sangre , Enfermedad de Chagas/complicaciones , Citocinas/biosíntesis , Coagulación Intravascular Diseminada/etiología , Masculino , Ratones , Ratones Endogámicos BALB C , Parasitemia/inmunología , Transducción de Señal , Trombocitopenia/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...