Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Anal Chim Acta ; 1304: 342536, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38637048

RESUMEN

Honeys of particular botanical origins can be associated with premium market prices, a trait which also makes them susceptible to fraud. Currently available authenticity testing methods for botanical classification of honeys are either time-consuming or only target a few "known" types of markers. Simple and effective methods are therefore needed to monitor and guarantee the authenticity of honey. In this study, a 'dilute-and-shoot' approach using liquid chromatography (LC) coupled to quadrupole time-of-flight-mass spectrometry (QTOF-MS) was applied to the non-targeted fingerprinting of honeys of different floral origin (buckwheat, clover and blueberry). This work investigated for the first time the impact of different instrumental conditions such as the column type, the mobile phase composition, the chromatographic gradient, and the MS fragmentor voltage (in-source collision-induced dissociation) on the botanical classification of honeys as well as the data quality. Results indicated that the data sets obtained for the various LC-QTOF-MS conditions tested were all suitable to discriminate the three honeys of different floral origin regardless of the mathematical model applied (random forest, partial least squares-discriminant analysis, soft independent modelling by class analogy and linear discriminant analysis). The present study investigated different LC-QTOF-MS conditions in a "dilute and shoot" method for honey analysis, in order to establish a relatively fast, simple and reliable analytical method to record the chemical fingerprints of honey. This approach is suitable for marker discovery and will be used for the future development of advanced predictive models for honey botanical origin.


Asunto(s)
Miel , Miel/análisis , Espectrometría de Masas , Análisis Discriminante , Cromatografía Liquida , Cromatografía Líquida con Espectrometría de Masas
2.
Anal Bioanal Chem ; 416(4): 895-912, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159142

RESUMEN

Simultaneous identification and quantification of per- and polyfluoroalkyl substances (PFAS) were evaluated for three quadrupole time-of-flight mass spectrometry (QTOF) acquisition methods. The acquisition methods investigated were MS-Only, all ion fragmentation (All-Ions), and automated tandem mass spectrometry (Auto-MS/MS). Target analytes were the 25 PFAS of US EPA Method 533 and the acquisition methods were evaluated by analyte response, limit of quantification (LOQ), accuracy, precision, and target-suspect screening identification limit (IL). PFAS LOQs were consistent across acquisition methods, with individual PFAS LOQs within an order of magnitude. The mean and range for MS-Only, All-Ions, and Auto-MS/MS are 1.3 (0.34-5.1), 2.1 (0.49-5.1), and 1.5 (0.20-5.1) pg on column. For fast data processing and tentative identification with lower confidence, MS-Only is recommended; however, this can lead to false-positives. Where high-confidence identification, structural characterisation, and quantification are desired, Auto-MS/MS is recommended; however, cycle time should be considered where many compounds are anticipated to be present. For comprehensive screening workflows and sample archiving, All-Ions is recommended, facilitating both quantification and retrospective analysis. This study validated HRMS acquisition approaches for quantification (based upon precursor data) and exploration of identification workflows for a range of PFAS compounds.


Asunto(s)
Fluorocarburos , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Fluorocarburos/análisis , Iones , Estudios Retrospectivos , Espectrometría de Masas en Tándem/métodos
3.
Anal Bioanal Chem ; 415(1): 35-44, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36435841

RESUMEN

Non-targeted analysis (NTA) using high-resolution mass spectrometry allows scientists to detect and identify a broad range of compounds in diverse matrices for monitoring exposure and toxicological evaluation without a priori chemical knowledge. NTA methods present an opportunity to describe the constituents of a sample across a multidimensional swath of chemical properties, referred to as "chemical space." Understanding and communicating which region of chemical space is extractable and detectable by an NTA workflow, however, remains challenging and non-standardized. For example, many sample processing and data analysis steps influence the types of chemicals that can be detected and identified. Accordingly, it is challenging to assess whether analyte non-detection in an NTA study indicates true absence in a sample (above a detection limit) or is a false negative driven by workflow limitations. Here, we describe the need for accessible approaches that enable chemical space mapping in NTA studies, propose a tool to address this need, and highlight the different ways in which it could be implemented in NTA workflows. We identify a suite of existing predictive and analytical tools that can be used in combination to generate scores that describe the likelihood a compound will be detected and identified by a given NTA workflow based on the predicted chemical space of that workflow. Higher scores correspond to a higher likelihood of compound detection and identification in a given workflow (based on sample extraction, data acquisition, and data analysis parameters). Lower scores indicate a lower probability of detection, even if the compound is truly present in the samples of interest. Understanding the constraints of NTA workflows can be useful for stakeholders when results from NTA studies are used in real-world applications and for NTA researchers working to improve their workflow performance. The hypothetical ChemSpaceTool suggested herein could be used in both a prospective and retrospective sense. Prospectively, the tool can be used to further curate screening libraries and set identification thresholds. Retrospectively, false detections can be filtered by the plausibility of the compound identification by the selected NTA method, increasing the confidence of unknown identifications. Lastly, this work highlights the chemometric needs to make such a tool robust and usable across a wide range of NTA disciplines and invites others who are working on various models to participate in the development of the ChemSpaceTool. Ultimately, the development of a chemical space mapping tool strives to enable further standardization of NTA by improving method transparency and communication around false detection rates, thus allowing for more direct method comparisons between studies and improved reproducibility. This, in turn, is expected to promote further widespread applications of NTA beyond research-oriented settings.


Asunto(s)
Estudios Retrospectivos , Reproducibilidad de los Resultados , Estudios Prospectivos , Espectrometría de Masas/métodos , Estándares de Referencia
5.
Sci Total Environ ; 765: 142720, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33572038

RESUMEN

This work critically compared the removal of fluorescing PARAFAC components and selected pharmaceuticals (carbamazepine, fluoxetine, gemfibrozil, primidone, sulfamethoxazole, trimethoprim) from a tertiary wastewater effluent by different UV- and ozone-based advanced oxidation processes (AOPs) operated at pilot-scale. Investigated AOPs included UV/H2O2, UV/Cl2, O3, O3/UV, H2O2/O3/UV, and the new Cl2/O3/UV. AOPs comparison was accomplished using various ozone doses (0-9 mg/L), UV fluences (191-981 mJ/cm2) and radical promoter concentrations of Cl2 = 0.04 mM and H2O2 = 0.29 mM. Chlorine-based AOPs produced radical species that reacted more selectively with pharmaceuticals than radical species and oxidants generated by other AOPs. Tryptophan-like substances and humic-like fluorescing compounds were the most degraded components by all AOPs, which were better removed than microbial products and fulvic-like fluorescing substances. Removal of UV absorbance at 254 (UV254) nm was always low. Overall, chlorine-based AOPs were more effective to reduce fluorescence intensities than similar H2O2-based AOPs. The Cl2/O3/UV process was the most effective AOP to degrade all target micro-pollutants except primidone. On the other hand, the oxidation performance of pharmaceuticals by other ozone-based AOPs followed the order H2O2/O3/UV > O3/UV > O3. UV/Cl2 process outcompeted UV/H2O2 only for the removal of trimethoprim and sulfamethoxazole. Correlations between the removal of pharmaceuticals and spectroscopic indexes (PARAFAC components and UV254) had unique regression parameters for each compound, surrogate parameter and oxidation process. Particularly, a diverse PARAFAC component for each investigated AOP resulted to be the most sensitive surrogate parameter able to monitor small changes of pharmaceuticals removal.


Asunto(s)
Ozono , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Purificación del Agua , Peróxido de Hidrógeno , Oxidación-Reducción , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
6.
Toxics ; 8(2)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429184

RESUMEN

Much of the seafood that humans consume comes from estuaries and coastal areas where microplastics (MPs) accumulate, due in part to continual input and degradation of plastic litter from rivers and runoff. As filter feeders, oysters (Crassostrea virginica) are especially vulnerable to MP pollution. In this study, we assessed MP pollution in water at oyster reefs along the Mississippi Gulf Coast when: (1) historic flooding of the Mississippi River caused the Bonnet Carré Spillway to remain open for a record period of time causing major freshwater intrusion to the area and deleterious impacts on the species and (2) the spillway was closed, and normal salinity conditions resumed. Microplastics (~25 µm-5 mm) were isolated using a single-pot method, preparing samples in the same vessel (Mason jars) used for their collection right up until the MPs were transferred onto filters for analyses. The MPs were quantified using Nile Red fluorescence detection and identified using laser direct infrared (LDIR) analysis. Concentrations ranged from ~12 to 381 particles/L and tended to decrease at sites impacted by major freshwater intrusion. With the spillway open, average MP concentrations were positively correlated with salinity (r = 0.87, p = 0.05) for sites with three or more samples examined. However, the dilution effect on MP abundances was temporary, and oyster yields suffered from the extended periods of lower salinity. There were no significant changes in the relative distribution of MPs during freshwater intrusions; most of the MPs (>50%) were in the lower size fraction (~25-90 µm) and consisted mostly of fragments (~84%), followed by fibers (~11%) and beads (~5%). The most prevalent plastic was polyester, followed by acrylates/polyurethanes, polyamide, polypropylene, polyethylene, and polyacetal. Overall, this work provides much-needed empirical data on the abundances, morphologies, and types of MPs that oysters are exposed to in the Mississippi Sound, although how much of these MPs are ingested and their impacts on the organisms deserves further scrutiny. This paper is believed to be the first major application of LDIR to the analysis of MPs in natural waters.

7.
Environ Sci Process Impacts ; 21(7): 1099-1114, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31179481

RESUMEN

Endocrine active contaminants (EACs) in environmental samples can pose a range of toxicological threats to ecosystems, especially through their impacts on reproductive pathways mediated by the estrogen receptor. The physicochemical properties of known organic EACs vary greatly and typically require different sample preparation techniques to identify different classes of compounds. EAC sources are similarly diverse, including both endogenous compounds and anthropogenic chemicals found in personal care products, pharmaceuticals, and their transformation products, which are often disposed of to sewers at their end of use. Looking for EACs in sewage sludge proposes a bottom-up, or end-of-use and treatment approach to discover environmentally relevant EACs, since many EACs accumulate in sludges even after application of robust wastewater treatment processes. This study demonstrates an extraction and analytical method capable of detecting a broad spectrum of known and suspected EACs via High Resolution Liquid Chromatography Quadropole Time-of-Flight Mass Spectrometry (LC-QTOF-MS) suspect screening of fourteen California sewage sludge samples. Spike-recovery experiments were performed using twelve carefully selected surrogates to assess different extraction solvents, sample weights, extraction pH values, procedures for combining extracts with different extraction pH's, and solid phase extraction cartridges. Using LC-QTOF-MS, identifications of several other organic compounds in the samples were made, a goal unachievable with unit resolution mass spectrometry. Suspect screening of California sludge samples discovered 118 compounds including hormones, pharmaceuticals, phosphate flame retardants, recreational drugs, antimicrobials, and pesticides. Additionally, 22 of these identified compounds are predicted to interfere with estrogen receptors or other reproductive/developmental pathways based on the VEGA QSAR toxicity prediction model.


Asunto(s)
Disruptores Endocrinos/análisis , Disruptores Endocrinos/toxicidad , Modelos Teóricos , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , California , Cromatografía Líquida de Alta Presión , Valor Predictivo de las Pruebas , Relación Estructura-Actividad Cuantitativa , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Aguas Residuales/análisis , Purificación del Agua/métodos
8.
Anal Bioanal Chem ; 411(16): 3507-3520, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31073731

RESUMEN

A quantitative method for the determination of per- and polyfluoroalkyl substances (PFAS) using liquid chromatography (LC) tandem mass spectrometry (MS/MS) was developed and applied to aqueous wastewater, surface water, and drinking water samples. Fifty-three PFAS from 14 compound classes (including many contaminants of emerging concern) were measured using a single analytical method. After solid-phase extraction using weak anion exchange cartridges, method detection limits in water ranged from 0.28 to 18 ng/L and method quantitation limits ranged from 0.35 to 26 ng/L. Method accuracy ranged from 70 to 127% for 49 of the 53 extracted PFAS, with the remaining four between 66 and 138%. Method precision ranged from 2 to 28% RSD, with 49 out of the 53 PFAS being below < 20%. In addition to quantifying > 50 PFAS, many of which are currently unregulated in the environment and not included in typical analytical lists, this method has efficiency advantages over other similar methods as it utilizes a single chromatographic separation with a shorter runtime (14 min), while maintaining method accuracy and stability and the separation of branched and linear PFAS isomers. The method was applied to wastewater influent and effluent; surface water from a river, wetland, and lake; and drinking water samples to survey PFAS contamination in Australian aqueous matrices. The compound classes FTCAs, FOSAAs, PFPAs, and diPAPs were detected for the first time in Australian WWTPs and the method was used to quantify PFAS concentrations from 0.60 to 193 ng/L. The range of compound classes detected and different PFAS signatures between sample locations demonstrate the need for expanded quantitation lists when investigating PFAS, especially newer classes in aqueous environmental samples. Graphical abstract.

9.
Anal Bioanal Chem ; 411(3): 715-724, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30535527

RESUMEN

Glyphosate is currently the most widely used herbicide in the world, yet screening of environmental waters for this chemical is limited by the need for specialized derivatization and measurement methods that can be tedious and time-consuming. In this work, we present a novel method for the detection and quantification at trace levels of glyphosate and aminomethylphosphonic acid (AMPA) in environmental water samples. The detection and quantification of the analytes was performed by liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS). Chromatographic separation was achieved with an ion-exchange column and a pH-gradient elution of a solution of ammonium hydroxide and ammonium acetate. The limit of detection for glyphosate and AMPA was 0.25 µg L-1 and the limit of quantification was 0.5 µg L-1with a 20-µL injection. The method was used to investigate the levels of glyphosate and AMPA in surface water samples from the Yarra River catchment area and urban constructed stormwater wetlands. The results indicate that at the time of sampling, no glyphosate or AMPA was present in the samples from the Yarra River catchment area (n = 10). However, glyphosate was detected above the limit of quantification in 33% of the wetland samples (n = 12), with concentrations ranging from 1.95 to 2.96 µg L-1. Similarly, AMPA was quantified in 83% of the wetland samples, with concentrations ranging from 0.55 to 2.42 µg L-1. To our knowledge, this is the first report of a pH-gradient LC-MS/MS method for glyphosate and AMPA analysis at ultratrace levels, with minimal sample processing, avoiding costly, time-consuming derivatization and preconcentration steps. Graphical abstract ᅟ.

10.
Food Chem ; 270: 47-52, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30174074

RESUMEN

Targeted metabolomics aims to provide a new approach to investigate metabolites and gather both qualitative and quantitative information. We describe a protocol for extraction and analysis of plant metabolites, specifically 13 secondary metabolites (antioxidants) using liquid chromatography coupled to triple quadrupole mass spectrometry (LC-MS/MS), with high linearity (R2 > 0.99) and reproducibility (0.23-6.23 R%) with low limits of detection (>0.001 ng/mL) and quantification (>0.2 ng/mL). The protocol was applied to study the antioxidant response of cucumber plants exposed to nanocopper pesticide. Dose-dependent changes in antioxidant concentrations were found, and 10 antioxidants were significantly consumed to scavenge reactive oxygen species, protecting plants from damage. Levels of three antioxidants were up-regulated, as a response to the depletion of the other antioxidants, signaling activation of the defense system. We demonstrated that the reported LC-MS/MS method provides a quantitative analysis of antioxidants in plant tissues, for example to investigate interactions between plants and nanomaterials.


Asunto(s)
Cromatografía Liquida/métodos , Cobre/química , Cucumis sativus/química , Plaguicidas/análisis , Espectrometría de Masas en Tándem/métodos , Reproducibilidad de los Resultados
11.
Water Res ; 145: 667-677, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30205338

RESUMEN

This study investigated, using rapid small-scale column testing, the breakthrough of dissolved organic matter (DOM) and eleven emerging organic contaminants (EOCs) during granular activated carbon (GAC) filtration of different water qualities, including wastewater, surface water and synthetic water (riverine organic matter dissolved in deionized water). Fluorescing organic matter was better adsorbed than UV absorbance at 254 nm (UV254) and dissolved organic carbon (DOC) in all tested water. Furthermore, highest adsorption of DOM (in terms of DOC, UV254 and fluorescence) was observed during wastewater filtration. UV absorbing DOM had fast and similar breakthrough in surface water and synthetic water, whereas fluorescence breakthrough was very rapid only in synthetic water. PARAFAC modeling showed that different fluorescing components were differently adsorbed during GAC process. Particularly, fluorescing components with maxima intensity at higher excitation wavelengths, which are corresponding to humic-like fluorescence substances, were better removed than other components in all waters. As opposed to DOM, EOCs were better adsorbed during synthetic water filtration, whereas the fastest EOCs breakthrough was observed during filtration of wastewater, which was the water that determined the highest carbon fouling. Exception was represented by long-chained perfluoroalkylated substances (i.e., PFOA, PFDA and PFOS). Indeed, adsorption of these compounds resulted independent of water quality. In this study was also investigated the applicability of UV254 and fluorescing PARAFAC components to act as surrogates in predicting EOCs removal by GAC in different water matrices. Empirical linear correlation for the investigated EOCs were determined with UV254 and fluorescing components in all water qualities. However, fluorescence measurements resulted more sensitive than UV254 to predict EOC breakthrough during GAC adsorption. When the data from all water qualities was combined, good correlations between the microbial humic-like PARAFAC component and EOC removals were still observed and they resulted independent of water quality if considering only real water matrices (wastewater and surface water). On the contrary, correlations between EOC removals and UV254 removals were independent of water quality when combining data of surface waters and synthetic water, but a different correlation model was needed to predict EOCs breakthrough in wastewater.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Compuestos Orgánicos , Espectrometría de Fluorescencia , Aguas Residuales
12.
Environ Sci Technol ; 52(5): 2878-2887, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29437387

RESUMEN

Chemical exposure in household dust poses potential risks to human health but has been studied incompletely thus far. Most analytical studies have focused on one or several compound classes, with analysis performed by either liquid or gas chromatography coupled with mass spectrometry (LC-MS or GC-MS). However, a comprehensive investigation of individual dust samples is missing. The present study comprehensively characterizes chemicals in dust by applying a combination of target, suspect, and nontarget screening approaches using both LC and GC with quadrupole time-of-flight (Q/TOF) MS. First, the extraction method was optimized to streamline detection of LC-Q/TOF and GC-Q/TOF amenable compounds and was successfully validated with over 100 target compounds. Nontarget screening with GC-Q/TOF was done by spectral deconvolution followed by a library search. Suspect screening by LC-Q/TOF was carried out with an accurate mass spectral library. Finally, LC-Q/TOF nontarget screening was carried out by extracting molecular features, acquiring tandem mass spectrometric (MS/MS) spectra, and performing compound identification by use of in silico fragmentation software tools. In total, 271 chemicals could be detected in 38 dust samples, 163 of which could be unambiguously confirmed by a reference standard. Many of them, such as the plastic leachable 7,9-di- tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione (CAS 82304-66-3) and three organofluorine compounds, are of emerging concern and their presence in dust has been underestimated. Advantages and drawbacks of the different approaches and analytical instruments are critically discussed.


Asunto(s)
Polvo , Espectrometría de Masas en Tándem , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Humanos , Plásticos
13.
Water Res ; 119: 21-32, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28433880

RESUMEN

Ozone oxidation has been demonstrated to be an effective treatment process for the attenuation of trace organic compounds (TOrCs); however, predicting TOrC attenuation by ozone processes is challenging in wastewaters. Since ozone is rapidly consumed, determining the exposure times of ozone and hydroxyl radical proves to be difficult. As direct potable reuse schemes continue to gain traction, there is an increasing need for the development of real-time monitoring strategies for TOrC abatement in ozone oxidation processes. Hence, this study is primarily aimed at developing indicator and surrogate models for the prediction of TOrC attenuation by ozone oxidation. To this end, the second-order kinetic equations with a second-phase Rct value (ratio of hydroxyl radical exposure to molecular ozone exposure) were used to calculate comparative kinetics of TOrC attenuation and the reduction of indicator and spectroscopic surrogate parameters, including UV absorbance at 254 nm (UVA254) and total fluorescence (TF). The developed indicator model using meprobamate as an indicator compound and the surrogate models with UVA254 and TF exhibited good predictive power for the attenuation of 13 kinetically distinct TOrCs in five filtered and unfiltered wastewater effluents (R2 values > 0.8). This study is intended to help provide a guideline for the implementation of indicator/surrogate models for real-time monitoring of TOrC abatement with ozone processes and integrate them into a regulatory framework in water reuse.


Asunto(s)
Compuestos Orgánicos , Ozono , Purificación del Agua , Oxidación-Reducción , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua
14.
Anal Bioanal Chem ; 409(10): 2639-2653, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28224246

RESUMEN

Veterinary drug residues in animal-derived foods must be monitored to ensure food safety, verify proper veterinary practices, enforce legal limits in domestic and imported foods, and for other purposes. A common goal in drug residue analysis in foods is to achieve acceptable monitoring results for as many analytes as possible, with higher priority given to the drugs of most concern, in an efficient and robust manner. The U.S. Department of Agriculture has implemented a multiclass, multi-residue method based on sample preparation using dispersive solid phase extraction (d-SPE) for cleanup and ultrahigh-performance liquid chromatography-tandem quadrupole mass spectrometry (UHPLC-QQQ) for analysis of >120 drugs at regulatory levels of concern in animal tissues. Recently, a new cleanup product called "enhanced matrix removal for lipids" (EMR-L) was commercially introduced that used a unique chemical mechanism to remove lipids from extracts. Furthermore, high-resolution quadrupole-time-of-flight (Q/TOF) for (U)HPLC detection often yields higher selectivity than targeted QQQ analyzers while allowing retroactive processing of samples for other contaminants. In this study, the use of both d-SPE and EMR-L sample preparation and UHPLC-QQQ and UHPLC-Q/TOF analysis methods for shared spiked samples of bovine muscle, kidney, and liver was compared. The results showed that the EMR-L method provided cleaner extracts overall and improved results for several anthelmintics and tranquilizers compared to the d-SPE method, but the EMR-L method gave lower recoveries for certain ß-lactam antibiotics. QQQ vs. Q/TOF detection showed similar mixed performance advantages depending on analytes and matrix interferences, with an advantage to Q/TOF for greater possible analytical scope and non-targeted data collection. Either combination of approaches may be used to meet monitoring purposes, with an edge in efficiency to d-SPE, but greater instrument robustness and less matrix effects when analyzing EMR-L extracts. Graphical abstract Comparison of cleanup methods in the analysis of veterinary drug residues in bovine tissues.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Residuos de Medicamentos/análisis , Lípidos/análisis , Espectrometría de Masas en Tándem/métodos , Drogas Veterinarias/análisis , Animales , Bovinos , Residuos de Medicamentos/química , Residuos de Medicamentos/aislamiento & purificación , Riñón/metabolismo , Lípidos/química , Lípidos/aislamiento & purificación , Hígado/metabolismo , Músculo Esquelético/metabolismo , Extracción en Fase Sólida , Distribución Tisular , Drogas Veterinarias/química , Drogas Veterinarias/aislamiento & purificación
15.
Environ Monit Assess ; 189(2): 73, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28116606

RESUMEN

The Mississippi River drainage basin includes the Illinois, Missouri, Ohio, Tennessee, and Arkansas rivers. These rivers drain areas with different physiography, population centers, and land use, with each contributing a different suites of metals and wastewater contaminants that can affect water quality. In July 2012, we determined 18 elements (Be, Rb, Sr, Cd, Cs, Ba, Tl, Pb, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) and chlorophyll-a (Chl-a) in the five major tributaries and in the Upper Mississippi River. The following summer, we determined both trace elements and 25 trace organic compounds at 10 sites in a longitudinal study of the main stem of the Mississippi River from Grafton, Illinois to Natchez, Mississippi. We detected wastewater contaminants, including pharmaceuticals and endocrine disrupting compounds, throughout the river system, with the highest concentrations occurring near urban centers (St. Louis and Memphis). Concentrations were highest for atrazine (673 ng L-1), DEET (540 ng L-1), TCPP (231 ng L-1), and caffeine (202 ng L-1). The Illinois, Missouri, and Yazoo rivers, which drain areas with intense agriculture, had relatively high concentrations of Chl-a and atrazine. However, the Ohio River delivered higher loads of contaminants to the Mississippi River, including an estimated 177 kg day-1 of atrazine, due to higher flow volumes. Concentrations of heavy metals (Ni, V, Co, Cu, Cd, and Zn) were relatively high in the Illinois River and low in the Ohio River, although dissolved metal concentrations were below US EPA maximum contaminant levels for surface water. Multivariate analysis demonstrated that the rivers can be distinguished based on elemental and contaminant profiles.


Asunto(s)
Atrazina/análisis , Clorofila/análisis , Disruptores Endocrinos/análisis , Monitoreo del Ambiente , Herbicidas/análisis , Metales Pesados/análisis , Compuestos Orgánicos/análisis , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Clorofila A , Estudios Longitudinales , Medio Oeste de Estados Unidos , Ríos/química , Estaciones del Año , Aguas Residuales/análisis , Calidad del Agua
16.
J Chromatogr A ; 1487: 100-107, 2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-28118976

RESUMEN

The addition of oxidants for disinfecting water can lead to the formation of potentially carcinogenic compounds referred to as disinfection byproducts (DBPs). Haloacetic acids (HAAs) are one of the most widely detected DBPs in US water utilities and some of them are regulated by the US Environmental Protection Agency (USEPA). The present study developed a method to analyze all the compounds in the USEPA method 557 (nine HAAs, bromate and dalapon) plus four potentially more toxic iodinated HAAs in water by coupling ion chromatography with tandem mass spectrometry (IC-MS/MS). This aqueous direct injection method has significant advantages over traditional GC methods, which require a derivatization and sample extraction that are laborious, time-consuming, and can negatively impact reproducibility. The method developed in this study requires half the time of the current USEPA method 557 on IC-MS/MS while including more compounds and achieving sub-µg/L level method detection limits (MDLs) for all 15 target analytes. The single laboratory lowest concentration minimum reporting level (LCMRL) has also been determined in reagent water, which ranged from 0.011 to 0.62µg/L for the analytes. The mean recoveries of the analytes during matrix spike recovery tests were 77-125% in finished drinking water and 81-112% in surface water. This method was then applied to untreated, chlorinated, and chloraminated groundwater and surface water samples. Bromate and 9 HAAs were detected at different levels in some of these samples.


Asunto(s)
Monitoreo del Ambiente/métodos , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis , Agua/química , Acetatos/análisis , Bromatos/análisis , Límite de Detección , Propionatos/análisis , Reproducibilidad de los Resultados
17.
J Hazard Mater ; 323(Pt A): 367-376, 2017 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-27233208

RESUMEN

This study investigated the applicability of different techniques for fluorescence excitation/emission matrices data interpretations, including peak-picking method, fluorescence regional integration and PARAFAC modelling, to act as surrogates in predicting emerging trace organic compounds (ETOrCs) removal during conventional wastewater treatments that usually comprise primary and secondary treatments. Results showed that fluorescence indexes developed using alternative methodologies but indicative of a same dissolved organic matter component resulted in similar predictions of the removal of the target compounds. The peak index defined by the excitation/emission wavelength positions (λex/λem) 225/290nm and related to aromatic proteins and tyrosine-like fluorescence was determined to be a particularly suitable surrogate for monitoring ETOrCs that had very high removal rates (average removal >70%) (i.e., triclosan, caffeine and ibuprofen). The peak index defined by λex/λem=245/440nm and the PARAFAC component with wavelength of the maxima λex/λem=245, 350/450, both identified as humic-like fluorescence, were found remarkably well correlated with ETOrCs such as atenolol, naproxen and gemfibrozil that were moderately removed (51-70% average removal). Finally, the PARAFAC component with wavelength of the maxima λex/λem=<240, 315/380 identified as microbial humic-like fluorescence was the only index correlated with the removal of the antibiotic trimethoprim (average removal 68%).


Asunto(s)
Monitoreo del Ambiente/métodos , Espectrometría de Fluorescencia/métodos , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Residuos de Medicamentos/análisis , Sustancias Húmicas , Aguas del Alcantarillado , Aguas Residuales
18.
Environ Sci Technol ; 51(3): 1553-1561, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28026950

RESUMEN

Efficient strategies are required to implement comprehensive suspect screening methods using high-resolution mass spectrometry within environmental monitoring campaigns. In this study, both liquid and gas chromatography time-of-flight mass spectrometry (LC-QTOF-MS and GC-QTOF-MS) were used to screen for >5000 target and suspect compounds in the Sacramento-San Joaquin River Delta in Northern California. LC-QTOF-MS data were acquired in All-Ions fragmentation mode in both positive and negative electrospray ionization (ESI). LC suspects were identified using two accurate mass LC-QTOF-MS/MS libraries containing pesticides, pharmaceuticals, and other environmental contaminants and a custom exact mass database with predicted transformation products (TPs). The additional fragment information from the All-Ions acquisition improved the confirmation of the compound identity, with a low false positive rate (9%). Overall, 25 targets, 73 suspects, and 5 TPs were detected. GC-QTOF-MS extracts were run in negative chemical ionization (NCI) for 21 targets (mainly pyrethroids) at sub-ng/L levels. For suspect screening, extracts were rerun in electron ionization (EI) mode with a retention time locked method using a GC-QTOF-MS pesticide library (containing exact mass fragments and retention times). Sixteen targets and 42 suspects were detected, of which 12 and 17, respectively, were not identified by LC-ESI-QTOF-MS. The results highlight the importance of analyzing water samples using multiple separation techniques and in multiple ionization modes to obtain a comprehensive chemical contaminant profile. The investigated river delta experiences significant pesticide inputs, leading to environmentally critical concentrations during rain events.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas en Tándem , Cromatografía Liquida , Plaguicidas , Ríos
19.
Chemosphere ; 156: 163-171, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27174829

RESUMEN

The removal of trace organic compounds (TOrCs) is of growing interest in water research and society. Powdered activated carbon (PAC) has been proven to be an effective method of removal for TOrCs in water, with the degree of effectiveness depending on dosage, contact time, and activated carbon type. In this study, the attenuation of TOrCs in three different secondary wastewater effluents using four PAC materials was studied in order to elucidate the effectiveness and efficacy of PAC for TOrC removal. With the notable exception of hydrochlorothiazide, all 14 TOrC indicators tested in this study exhibited a positive correlation of removal rate with their log Dow values, demonstrating that the main adsorption mechanism was hydrophobic interaction. As a predictive model, the modified Chick-Watson model, often used for the prediction of microorganism inactivation by disinfectants, was applied. The applied model exhibited good predictive power for TOrC attenuation by PAC in wastewater. In addition, surrogate models based upon spectroscopic measurements including UV absorbance at 254 nm and total fluorescence were applied to predict TOrC removal by PAC. The surrogate model was found to provide an excellent prediction of TOrC attenuation for all combinations of water quality and PAC type included in this study. The success of spectrometric parameters as surrogates in predicting TOrC attenuation by PAC are particularly useful because of their potential application in real-time on-line sensor monitoring and process control at full-scale water treatment plants, which could lead to significantly reduced operator response times and PAC operational optimization.


Asunto(s)
Carbono/análisis , Compuestos Orgánicos/análisis , Espectrometría de Fluorescencia/métodos , Espectrofotometría Ultravioleta/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Carbono/química , Compuestos Orgánicos/química , Compuestos Orgánicos/aislamiento & purificación , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Calidad del Agua
20.
J Pharmacol Exp Ther ; 358(2): 246-53, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27233293

RESUMEN

Hepatic multidrug resistance-associated protein 2 (MRP2) provides the biliary elimination pathway for many xenobiotics. Disruption of this pathway contributes to retention of these compounds and may ultimately lead to adverse drug reactions. MRP2 mislocalization from the canalicular membrane has been observed in nonalcoholic steatohepatitis (NASH), the late stage of nonalcoholic fatty liver disease, which is characterized by fat accumulation, oxidative stress, inflammation, and fibrosis. MRP2/Mrp2 mislocalization is observed in both human NASH and the rodent methionine and choline-deficient (MCD) diet model, but the extent to which it impacts overall transport capacity of MRP2 is unknown. Pemetrexed is an antifolate chemotherapeutic indicated for non-small cell lung cancer, yet its hepatobiliary elimination pathway has yet to be determined. The purpose of this study was to quantify the loss of Mrp2 function in NASH using an obligate Mrp2 transport substrate. To determine whether pemetrexed is an obligate Mrp2 substrate, its cumulative biliary elimination was compared between wild-type and Mrp2(-/-) rats. No pemetrexed was detected in the bile of Mrp2(-/-) rats, indicating pemetrexed is completely reliant on Mrp2 function for biliary elimination. Comparing the biliary elimination of pemetrexed between MCD and control animals identified a transporter-dependent decrease in biliary excretion of 60% in NASH. This study identifies Mrp2 as the exclusive biliary elimination mechanism for pemetrexed, making it a useful in vivo probe substrate for Mrp2 function, and quantifying the loss of function in NASH. This mechanistic feature may provide useful insight into the impact of NASH on interindividual variability in response to pemetrexed.


Asunto(s)
Eliminación Hepatobiliar , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Pemetrexed/farmacología , Pemetrexed/farmacocinética , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA