Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38903089

RESUMEN

Genome-wide association studies (GWAS) have identified numerous body mass index (BMI) loci. However, most underlying mechanisms from risk locus to BMI remain unknown. Leveraging omics data through integrative analyses could provide more comprehensive views of biological pathways on BMI. We analyzed genotype and blood gene expression data in up to 5,619 samples from the Framingham Heart Study (FHS). Using 3,992 single nucleotide polymorphisms (SNPs) at 97 BMI loci and 20,692 transcripts within 1 Mb, we performed separate association analyses of transcript with BMI and SNP with transcript (PBMI and PSNP, respectively) and then a correlated meta-analysis between the full summary data sets (PMETA). We identified transcripts that met Bonferroni-corrected significance for each omic, were more significant in the correlated meta-analysis than each omic, and were at least nominally associated with BMI in FHS data. Among 308 significant SNP-transcript-BMI associations, we identified seven genes (NT5C2, GSTM3, SNAPC3, SPNS1, TMEM245, YPEL3, and ZNF646) in five association regions. Using an independent sample of blood gene expression data, we validated results for SNAPC3 and YPEL3. We tested for generalization of these associations in hypothalamus, nucleus accumbens, and liver and observed significant (PMETA<0.05 & PMETA

2.
PLoS One ; 16(8): e0255609, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34347846

RESUMEN

BACKGROUND: African ancestry individuals with comparable overall anthropometric measures to Europeans have lower abdominal adiposity. To explore the genetic underpinning of different adiposity patterns, we investigated whether genetic risk scores for well-studied adiposity phenotypes like body mass index (BMI) and waist circumference (WC) also predict other, less commonly measured adiposity measures in 2420 African American individuals from the Jackson Heart Study. METHODS: Polygenic risk scores (PRS) were calculated using GWAS-significant variants extracted from published studies mostly representing European ancestry populations for BMI, waist-hip ratio (WHR) adjusted for BMI (WHRBMIadj), waist circumference adjusted for BMI (WCBMIadj), and body fat percentage (BF%). Associations between each PRS and adiposity measures including BF%, subcutaneous adiposity tissue (SAT), visceral adiposity tissue (VAT) and VAT:SAT ratio (VSR) were examined using multivariable linear regression, with or without BMI adjustment. RESULTS: In non-BMI adjusted models, all phenotype-PRS were found to be positive predictors of BF%, SAT and VAT. WHR-PRS was a positive predictor of VSR, but BF% and BMI-PRS were negative predictors of VSR. After adjusting for BMI, WHR-PRS remained a positive predictor of BF%, VAT and VSR but not SAT. WC-PRS was a positive predictor of SAT and VAT; BF%-PRS was a positive predictor of BF% and SAT only. CONCLUSION: These analyses suggest that genetically driven increases in BF% strongly associate with subcutaneous rather than visceral adiposity and BF% is strongly associated with BMI but not central adiposity-associated genetic variants. How common genetic variants may contribute to observed differences in adiposity patterns between African and European ancestry individuals requires further study.


Asunto(s)
Adiposidad/genética , Negro o Afroamericano/estadística & datos numéricos , Estudio de Asociación del Genoma Completo/métodos , Grasa Intraabdominal/patología , Obesidad/fisiopatología , Grasa Subcutánea/patología , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Fenotipo , Factores de Riesgo , Factores Sexuales , Circunferencia de la Cintura
3.
Am J Trop Med Hyg ; 101(3): 525-533, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31392940

RESUMEN

Subject to a high burden of diarrheal diseases, Afghanistan is also susceptible to climate change. This study investigated the spatiotemporal distribution of diarrheal disease in the country and how associated it is with climate variables. Using monthly aggregated new cases of acute diarrhea reported between 2010 and 2016 and monthly averaged climate data at the district level, we fitted a hierarchical Bayesian spatiotemporal statistical model. We found aridity and mean daily temperature were positively associated with diarrhea incidence; every 1°C increase in mean daily temperature and 0.01-unit change in the aridity index were associated with a 0.70% (CI: 0.67%, 0.73%) increase and a 4.79% (CI: 4.30%, 5.26%) increase in the risk of diarrhea, respectively. Average annual temperature, on the other hand, was negatively associated, with a 3.7% (CI: 3.74%, 3.68) decrease in risk for every degree Celsius increase in annual average temperature. Temporally, most districts exhibited similar seasonal trends, with incidence peaking in summer, except for the eastern region where differences in climate patterns and population density may be associated with high rates of diarrhea throughout the year. The results from this study highlight the significant role of climate in shaping diarrheal patterns in Afghanistan, allowing policymakers to account for potential impacts of climate change in their public health assessments.


Asunto(s)
Cambio Climático , Diarrea/epidemiología , Temperatura , Afganistán/epidemiología , Teorema de Bayes , Humanos , Incidencia , Modelos Estadísticos , Salud Pública , Factores de Riesgo , Estaciones del Año , Análisis Espacio-Temporal
4.
Malar J ; 15(1): 566, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27876041

RESUMEN

BACKGROUND: Malaria remains endemic in Afghanistan. National control and prevention strategies would be greatly enhanced through a better ability to forecast future trends in disease incidence. It is, therefore, of interest to develop a predictive tool for malaria patterns based on the current passive and affordable surveillance system in this resource-limited region. METHODS: This study employs data from Ministry of Public Health monthly reports from January 2005 to September 2015. Malaria incidence in Afghanistan was forecasted using autoregressive integrated moving average (ARIMA) models in order to build a predictive tool for malaria surveillance. Environmental and climate data were incorporated to assess whether they improve predictive power of models. RESULTS: Two models were identified, each appropriate for different time horizons. For near-term forecasts, malaria incidence can be predicted based on the number of cases in the four previous months and 12 months prior (Model 1); for longer-term prediction, malaria incidence can be predicted using the rates 1 and 12 months prior (Model 2). Next, climate and environmental variables were incorporated to assess whether the predictive power of proposed models could be improved. Enhanced vegetation index was found to have increased the predictive accuracy of longer-term forecasts. CONCLUSION: Results indicate ARIMA models can be applied to forecast malaria patterns in Afghanistan, complementing current surveillance systems. The models provide a means to better understand malaria dynamics in a resource-limited context with minimal data input, yielding forecasts that can be used for public health planning at the national level.


Asunto(s)
Enfermedades Endémicas , Malaria/epidemiología , Afganistán/epidemiología , Clima , Ambiente , Humanos , Incidencia , Modelos Estadísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...