Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Life (Basel) ; 14(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38672748

RESUMEN

BACKGROUND: Mitochondrial dysfunction, which is triggered by systemic ischemia-reperfusion (IR) injury and affects various organs, is a key factor in the development of post-cardiac arrest syndrome (PCAS). Current research on PCAS primarily addresses generalized mitochondrial responses, resulting in a knowledge gap regarding organ-specific mitochondrial dynamics. This review focuses on the organ-specific mitochondrial responses to IR injury, particularly examining the brain, heart, and kidneys, to highlight potential therapeutic strategies targeting mitochondrial dysfunction to enhance outcomes post-IR injury. METHODS AND RESULTS: We conducted a narrative review examining recent advancements in mitochondrial research related to IR injury. Mitochondrial responses to IR injury exhibit considerable variation across different organ systems, influenced by unique mitochondrial structures, bioenergetics, and antioxidative capacities. Each organ demonstrates distinct mitochondrial behaviors that have evolved to fulfill specific metabolic and functional needs. For example, cerebral mitochondria display dynamic responses that can be both protective and detrimental to neuronal activity and function during ischemic events. Cardiac mitochondria show vulnerability to IR-induced oxidative stress, while renal mitochondria exhibit a unique pattern of fission and fusion, closely linked to their susceptibility to acute kidney injury. This organ-specific heterogeneity in mitochondrial responses requires the development of tailored interventions. Progress in mitochondrial medicine, especially in the realms of genomics and metabolomics, is paving the way for innovative strategies to combat mitochondrial dysfunction. Emerging techniques such as mitochondrial transplantation hold the potential to revolutionize the management of IR injury in resuscitation science. CONCLUSIONS: The investigation into organ-specific mitochondrial responses to IR injury is pivotal in the realm of resuscitation research, particularly within the context of PCAS. This nuanced understanding holds the promise of revolutionizing PCAS management, addressing the unique mitochondrial dysfunctions observed in critical organs affected by IR injury.

2.
J Transl Med ; 22(1): 230, 2024 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433198

RESUMEN

BACKGROUND: Mitochondrial transplantation (MTx) has emerged as a novel therapeutic strategy, particularly effective in diseases characterized by mitochondrial dysfunction. This review synthesizes current knowledge on MTx, focusing on its role in modulating immune responses and explores its potential in treating post-cardiac arrest syndrome (PCAS). METHODS: We conducted a comprehensive narrative review of animal and human studies that have investigated the effects of MTx in the context of immunomodulation. This included a review of the immune responses following critical condition such as ischemia reperfusion injury, the impact of MTx on these responses, and the therapeutic potential of MTx in various conditions. RESULTS: Recent studies indicate that MTx can modulate complex immune responses and reduce ischemia-reperfusion injury post-CA, suggesting MTx as a novel, potentially more effective approach. The review highlights the role of MTx in immune modulation, its potential synergistic effects with existing treatments such as therapeutic hypothermia, and the need for further research to optimize its application in PCAS. The safety and efficacy of autologous versus allogeneic MTx, particularly in the context of immune reactions, are critical areas for future investigation. CONCLUSION: MTx represents a promising frontier in the treatment of PCAS, offering a novel approach to modulate immune responses and restore cellular energetics. Future research should focus on long-term effects, combination therapies, and personalized medicine approaches to fully harness the potential of MTx in improving patient outcomes in PCAS.


Asunto(s)
Paro Cardíaco , Hipotermia Inducida , Daño por Reperfusión , Animales , Humanos , Terapia Combinada , Medicina de Precisión , Paro Cardíaco/terapia , Inmunomodulación , Daño por Reperfusión/terapia
3.
Front Immunol ; 15: 1362858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545102

RESUMEN

Background: Cardiac arrest (CA) is a significant public health concern. There is the high imminent mortality and survival in those who are resuscitated is substantively compromised by the post-CA syndrome (PCAS), characterized by multiorgan ischemia-reperfusion injury (IRI). The inflammatory response in PCAS is complex and involves various immune cell types, including lymphocytes and myeloid cells that have been shown to exacerbate organ IRI, such as myocardial infarction. Purinergic signaling, as regulated by CD39 and CD73, has emerged as centrally important in the context of organ-specific IRI. Hence, comprehensive understanding of such purinergic responses may be likewise imperative for improving outcomes in PCAS. Methods: We have investigated alterations of immune cell populations after CA by utilizing rodent models of PCAS. Blood and spleen were collected after CA and resuscitation and underwent flow cytometry analysis to evaluate shifts in CD3+CD4+ helper T cells, CD3+CD8a+ cytotoxic T cells, and CD4/CD8a ratios. We then examined the expression of CD39 and CD73 across diverse cell types, including myeloid cells, T lymphocytes, and B lymphocytes. Results: In both rat and mouse models, there were significant increases in the frequency of CD3+CD4+ T lymphocytes in PCAS (rat, P < 0.01; mouse, P < 0.001), with consequently elevated CD4/CD8a ratios in whole blood (both, P < 0.001). Moreover, CD39 and CD73 expression on blood leukocytes were markedly increased (rat, P < 0.05; mouse, P < 0.01 at 24h). Further analysis in the experimental mouse model revealed that CD11b+ myeloid cells, with significant increase in their population (P < 0.01), had high level of CD39 (88.80 ± 2.05 %) and increased expression of CD73 (P < 0.05). CD19+ B lymphocytes showed slight increases of CD39 (P < 0.05 at 2h) and CD73 (P < 0.05 at 2h), while, CD3+ T lymphocytes had decreased levels of them. These findings suggested a distinct patterns of expression of CD39 and CD73 in these specific immune cell populations after CA. Conclusions: These data have provided comprehensive insights into the immune response after CA, highlighting high-level expressions of CD39 and CD73 in myeloid cells.


Asunto(s)
Paro Cardíaco , Roedores , Animales , Ratones , Ratas , Citometría de Flujo , Leucocitos , Linfocitos T Citotóxicos , 5'-Nucleotidasa/metabolismo
4.
Am J Emerg Med ; 78: 182-187, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38301368

RESUMEN

OBJECTIVE: Oxygen consumption (VO2), carbon dioxide generation (VCO2), and respiratory quotient (RQ), which is the ratio of VO2 to VCO2, are critical indicators of human metabolism. To seek a link between the patient's metabolism and pathophysiology of critical illness, we investigated the correlation of these values with mortality in critical care patients. METHODS: This was a prospective, observational study conducted at a suburban, quaternary care teaching hospital. Age 18 years or older healthy volunteers and patients who underwent mechanical ventilation were enrolled. A high-fidelity automation device, which accuracy is equivalent to the gold standard Douglas Bag technique, was used to measure VO2, VCO2, and RQ at a wide range of fraction of inspired oxygen (FIO2). RESULTS: We included a total of 21 subjects including 8 post-cardiothoracic surgery patients, 7 intensive care patients, 3 patients from the emergency room, and 3 healthy volunteers. This study included 10 critical care patients, whose metabolic measurements were performed in the ER and ICU, and 6 died. VO2, VCO2, and RQ of survivors were 282 +/- 95 mL/min, 202 +/- 81 mL/min, and 0.70 +/- 0.10, and those of non-survivors were 240 +/- 87 mL/min, 140 +/- 66 mL/min, and 0.57 +/- 0.08 (p = 0.34, p = 0.10, and p < 0.01), respectively. The difference of RQ was statistically significant (p < 0.01) and it remained significant when the subjects with FIO2 < 0.5 were excluded (p < 0.05). CONCLUSIONS: Low RQ correlated with high mortality, which may potentially indicate a decompensation of the oxygen metabolism in critically ill patients.


Asunto(s)
Pulmón , Respiración Artificial , Humanos , Adolescente , Estudios Prospectivos , Calorimetría Indirecta/métodos , Consumo de Oxígeno , Dióxido de Carbono/metabolismo , Enfermedad Crítica/terapia , Oxígeno
5.
Adv Exp Med Biol ; 1438: 217-222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37845464

RESUMEN

Sudden cardiac arrest (CA) is the third leading cause of death. Immediate reoxygenation with high concentrations of supplemental oxygen (O2) during cardiopulmonary resuscitation (CPR) is recommended according to the current guidelines for adult CA. However, a point in controversy exists because of the known harm of prolonged exposure to 100% O2. Therefore, there have been much debate on an optimal use of supplemental O2, yet little is known about the duration and dosage of O2 administration. To test whether supplying a high concentration of O2 during CPR and post resuscitation is beneficial or harmful, rats subjected to 10-minute asphyxia CA were administered either 100% O2 (n = 8) or 30% O2 (n = 8) for 2 hours after CPR. Two hours after initiating CPR, the brain, lung, and heart tissues were collected to compare mRNA gene expression levels of inflammatory cytokines, apoptotic and oxidative stress-related markers. The 100% O2 group had significantly shorter time to return of spontaneous circulation (ROSC) than the 30% O2 group (62.9 ± 2.2 and 77.5 ± 5.9 seconds, respectively, P < 0.05). Arterial blood gas analysis revealed that the 100% O2 group had significantly higher PaCO2 (49.4 ± 4.9 mmHg and 43.0 ± 3.0 mmHg, P < 0.01), TCO2 (29.8 ± 2.7 and 26.6 ± 1.1 mmol/L, P < 0.05), HCO3- (28.1 ± 2.4 and 25.4 ± 1.2 mmol/L, P < 0.05), and BE (2.6 ± 2.3 and 0.1 ± 1.4 mmol/L, P < 0.05) at 2 hours after initiating CPR, but no changes in pH (7.37 ± 0.03 and 7.38 ± 0.03, ns). Inflammation- (Il6, Tnf) and apoptosis- (Casp3) related mRNA gene expression levels were significantly low in the 100% O2 group in the brain, however, oxidative stress moderator Hmox1 increased in the 100% O2 group. Likewise, mRNA gene expression of Icam1, Casp9, Bcl2, and Bax were low in the 100% O2 group in the lung. Contrarily, mRNA gene expression of Il1b and Icam1 were low in the 30% O2 group in the heart. Supplying 30% O2 during and after CPR significantly delayed the time to ROSC and increased inflammation-/apoptosis- related gene expression in the brain and lung, indicating that insufficient O2 was associated with unfavorable biological responses post CA, while prolonged exposure to high-concentration O2 should be still cautious in general.


Asunto(s)
Reanimación Cardiopulmonar , Ratas , Animales , Oxígeno , Inflamación , ARN Mensajero , Terapia por Inhalación de Oxígeno
6.
BMC Pulm Med ; 23(1): 390, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37840131

RESUMEN

OBJECTIVE: Using a system, which accuracy is equivalent to the gold standard Douglas Bag (DB) technique for measuring oxygen consumption (VO2), carbon dioxide generation (VCO2), and respiratory quotient (RQ), we aimed to continuously measure these metabolic indicators and compare the values between post-cardiothoracic surgery and critical care patients. METHODS: This was a prospective, observational study conducted at a suburban, quaternary care teaching hospital. Age 18 years or older patients who underwent mechanical ventilation were enrolled. RESULTS: We included 4 post-surgery and 6 critical care patients. Of those, 3 critical care patients died. The longest measurement reached to 12 h and 15 min and 50 cycles of repeat measurements were performed. VO2 of the post-surgery patients were 234 ± 14, 262 ± 27, 212 ± 16, and 192 ± 20 mL/min, and those of critical care patients were 122 ± 20, 189 ± 9, 191 ± 7, 191 ± 24, 212 ± 12, and 135 ± 21 mL/min, respectively. The value of VO2 was more variable in the post-surgery patients and the range of each patient was 44, 126, 71, and 67, respectively. SOFA scores were higher in non-survivors and there were negative correlations of RQ with SOFA. CONCLUSIONS: We developed an accurate system that enables continuous and repeat measurements of VO2, VCO2, and RQ. Critical care patients may have less activity in metabolism represented by less variable values of VO2 and VCO2 over time as compared to those of post-cardiothoracic surgery patients. Additionally, an alteration of these values may mean a systemic distinction of the metabolism of critically ill patients.


Asunto(s)
Cuidados Críticos , Consumo de Oxígeno , Humanos , Adolescente , Estudios Prospectivos , Calorimetría Indirecta/métodos , Respiración Artificial , Dióxido de Carbono/metabolismo
7.
Purinergic Signal ; 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37507639

RESUMEN

Purine nucleotide adenosine triphosphate (ATP) is a source of intracellular energy maintained by mitochondrial oxidative phosphorylation. However, when released from ischemic cells into the extracellular space, they act as death-signaling molecules (eATP). Despite there being potential benefit in using pyruvate to enhance mitochondria by inducing a highly oxidative metabolic state, its association with eATP levels is still poorly understood. Therefore, while we hypothesized that pyruvate could beneficially increase intracellular ATP with the enhancement of mitochondrial function after cardiac arrest (CA), our main focus was whether a proportion of the raised intracellular ATP would detrimentally leak out into the extracellular space. As indicated by the increased levels in systemic oxygen consumption, intravenous administrations of bolus (500 mg/kg) and continuous infusion (1000 mg/kg/h) of pyruvate successfully increased oxygen metabolism in post 10-min CA rats. Plasma ATP levels increased significantly from 67 ± 11 nM before CA to 227 ± 103 nM 2 h after the resuscitation; however, pyruvate administration did not affect post-CA ATP levels. Notably, pyruvate improved post-CA cardiac contraction and acidemia (low pH). We also found that pyruvate increased systemic CO2 production post-CA. These data support that pyruvate has therapeutic potential for improving CA outcomes by enhancing oxygen and energy metabolism in the brain and heart and attenuating intracellular hydrogen ion disorders, but does not exacerbate the death-signaling of eATP in the blood.

8.
FASEB J ; 37(7): e23001, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249913

RESUMEN

Cardiac arrest (CA) and concomitant post-CA syndrome lead to a lethal condition characterized by systemic ischemia-reperfusion injury. Oxygen (O2 ) supply during cardiopulmonary resuscitation (CPR) is the key to success in resuscitation, but sustained hyperoxia can produce toxic effects post CA. However, only few studies have investigated the optimal duration and dosage of O2 administration. Herein, we aimed to determine whether high concentrations of O2 at resuscitation are beneficial or harmful. After rats were resuscitated from the 10-min asphyxia, mechanical ventilation was restarted at an FIO2 of 1.0 or 0.3. From 10 min after initiating CPR, FIO2 of both groups were maintained at 0.3. Bio-physiological parameters including O2 consumption (VO2 ) and mRNA gene expression in multiple organs were evaluated. The FIO2 0.3 group decreased VO2 , delayed the time required to achieve peak MAP, lowered ejection fraction (75.1 ± 3.3% and 59.0 ± 5.7% with FIO2 1.0 and 0.3, respectively; p < .05), and increased blood lactate levels (4.9 ± 0.2 mmol/L and 5.6 ± 0.2 mmol/L, respectively; p < .05) at 10 min after CPR. FIO2 0.3 group had significant increases in hypoxia-inducible factor, inflammatory, and apoptosis-related mRNA gene expression in the brain. Likewise, significant upregulations of hypoxia-inducible factor and apoptosis-related gene expression were observed in the FIO2 0.3 group in the heart and lungs. Insufficient O2 supplementation in the first 10 min of resuscitation could prolong ischemia, and may result in unfavorable biological responses 2 h after CA. Faster recovery from the impairment of O2 metabolism might contribute to the improvement of hemodynamics during the early post-resuscitation phase; therefore, it may be reasonable to provide the maximum feasible O2 concentrations during CPR.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Ratas , Animales , Oxígeno , Paro Cardíaco/terapia , Hemodinámica , Hipoxia , Modelos Animales de Enfermedad
9.
BMC Med ; 21(1): 56, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36922820

RESUMEN

BACKGROUND: Mitochondrial transplantation (MTx) is an emerging but poorly understood technology with the potential to mitigate severe ischemia-reperfusion injuries after cardiac arrest (CA). To address critical gaps in the current knowledge, we test the hypothesis that MTx can improve outcomes after CA resuscitation. METHODS: This study consists of both in vitro and in vivo studies. We initially examined the migration of exogenous mitochondria into primary neural cell culture in vitro. Exogenous mitochondria extracted from the brain and muscle tissues of donor rats and endogenous mitochondria in the neural cells were separately labeled before co-culture. After a period of 24 h following co-culture, mitochondrial transfer was observed using microscopy. In vitro adenosine triphosphate (ATP) contents were assessed between freshly isolated and frozen-thawed mitochondria to compare their effects on survival. Our main study was an in vivo rat model of CA in which rats were subjected to 10 min of asphyxial CA followed by resuscitation. At the time of achieving successful resuscitation, rats were randomly assigned into one of three groups of intravenous injections: vehicle, frozen-thawed, or fresh viable mitochondria. During 72 h post-CA, the therapeutic efficacy of MTx was assessed by comparison of survival rates. The persistence of labeled donor mitochondria within critical organs of recipient animals 24 h post-CA was visualized via microscopy. RESULTS: The donated mitochondria were successfully taken up into cultured neural cells. Transferred exogenous mitochondria co-localized with endogenous mitochondria inside neural cells. ATP content in fresh mitochondria was approximately four times higher than in frozen-thawed mitochondria. In the in vivo survival study, freshly isolated functional mitochondria, but not frozen-thawed mitochondria, significantly increased 72-h survival from 55 to 91% (P = 0.048 vs. vehicle). The beneficial effects on survival were associated with improvements in rapid recovery of arterial lactate and glucose levels, cerebral microcirculation, lung edema, and neurological function. Labeled mitochondria were observed inside the vital organs of the surviving rats 24 h post-CA. CONCLUSIONS: MTx performed immediately after resuscitation improved survival and neurological recovery in post-CA rats. These results provide a foundation for future studies to promote the development of MTx as a novel therapeutic strategy to save lives currently lost after CA.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Ratas , Animales , Reanimación Cardiopulmonar/métodos , Paro Cardíaco/terapia , Mitocondrias , Encéfalo/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/uso terapéutico , Modelos Animales de Enfermedad
10.
Sci Rep ; 13(1): 3419, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854715

RESUMEN

Cardiac arrest (CA) patients suffer from systemic ischemia-reperfusion (IR) injury leading to multiple organ failure; however, few studies have focused on tissue-specific pathophysiological responses to IR-induced oxidative stress. Herein, we investigated biological and physiological parameters of the brain and heart, and we particularly focused on the lung dysfunction that has not been well studied to date. We aimed to understand tissue-specific susceptibility to oxidative stress and tested how oxygen concentrations in the post-resuscitation setting would affect outcomes. Rats were resuscitated from 10 min of asphyxia CA. Mechanical ventilation was initiated at the beginning of cardiopulmonary resuscitation. We examined animals with or without CA, and those were further divided into the animals exposed to 100% oxygen (CA_Hypero) or those with 30% oxygen (CA_Normo) for 2 h after resuscitation. Biological and physiological parameters of the brain, heart, and lungs were assessed. The brain and lung functions were decreased after CA and resuscitation indicated by worse modified neurological score as compared to baseline (222 ± 33 vs. 500 ± 0, P < 0.05), and decreased PaO2 (20 min after resuscitation: 113 ± 9 vs. baseline: 128 ± 9 mmHg, P < 0.05) and increased airway pressure (2 h: 10.3 ± 0.3 vs. baseline: 8.1 ± 0.2 mmHg, P < 0.001), whereas the heart function measured by echocardiography did not show significant differences compared before and after CA (ejection fraction, 24 h: 77.9 ± 3.3% vs. baseline: 82.2 ± 1.9%, P = 0.2886; fractional shortening, 24 h: 42.9 ± 3.1% vs. baseline: 45.7 ± 1.9%, P = 0.4658). Likewise, increases of superoxide production in the brain and lungs were remarkable, while those in the heart were moderate. mRNA gene expression analysis revealed that CA_Hypero group had increases in Il1b as compared to CA_Normo group significantly in the brain (P < 0.01) and lungs (P < 0.001) but not the heart (P = 0.4848). Similarly, hyperoxia-induced increases in other inflammatory and apoptotic mRNA gene expression were observed in the brain, whereas no differences were found in the heart. Upon systemic IR injury initiated by asphyxia CA, hyperoxia-induced injury exacerbated inflammation/apoptosis signals in the brain and lungs but might not affect the heart. Hyperoxia following asphyxia CA is more damaging to the brain and lungs but not the heart.


Asunto(s)
Paro Cardíaco , Hiperoxia , Daño por Reperfusión , Animales , Ratas , Asfixia , Encéfalo/patología , Reanimación Cardiopulmonar , Paro Cardíaco/complicaciones , Hiperoxia/complicaciones , Isquemia , Pulmón , Oxígeno , Reperfusión , Daño por Reperfusión/complicaciones , Daño por Reperfusión/patología , Modelos Animales de Enfermedad
11.
Adv Exp Med Biol ; 1395: 385-390, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36527667

RESUMEN

Cerebral blood oxygenation (CBO), measured using near-infrared spectroscopy (NIRS), can play an important role in post-cardiac arrest (CA) care as this emerging technology allows for noninvasive real-time monitoring of the dynamic changes of tissue oxygenation. We recently reported that oxyhaemoglobin (oxy-Hb), measured using NIRS, may be used to evaluate the quality of chest compressions by monitoring the brain tissue oxygenation, which is a critical component for successful resuscitation. Mitochondria are the key to understanding the pathophysiology of post-CA oxygen metabolism. In this study, we focused on mitochondrial dysfunction, aiming to explore its association with CBO parameters such as oxy-Hb and deoxyhaemoglobin (deoxy-Hb) or tissue oxygenation index (TOI). Male Sprague-Dawley rats were used in the study. We applied NIRS between the nasion and the upper cervical spine. Following 10 min of CA, the rats underwent cardiopulmonary resuscitation (CPR) with a bolus injection of 20 µg/kg epinephrine. At 10 and 20 min after CPR, brain, and kidney tissues were collected. We isolated mitochondria from these tissues and evaluated the association between CBO and mitochondrial oxygen consumption ratios. There were no significant differences in the mitochondrial yields (10 vs. 20 min after resuscitation: brain, 1.33 ± 0.68 vs. 1.30 ± 0.75 mg/g; kidney, 19.5 ± 3.2 vs. 16.9 ± 5.3 mg/g, respectively). State 3 mitochondrial oxygen consumption rates, known as ADP-stimulated respiration, demonstrated a significant difference at 10 vs. 20 min after CPR (brain, 170 ± 26 vs. 115 ± 17 nmol/min/mg protein; kidney, 170 ± 20 vs. 130 ± 16 nmol/min/mg protein, respectively), whereas there was no significant difference in ADP non-dependent state 4 oxygen consumption rates (brain, 34.0 ± 6.7 vs. 31.8 ± 10 nmol/min/mg protein; kidney, 29.8 ± 4.8 vs. 21.0 ± 2.6 nmol/min/mg protein, respectively). Consequently, the respiratory control ratio (RCR = state 3/state 4) showed a significant difference over time, but this was only noted in the brain (brain, 5.0 ± 0.29 vs. 3.8 ± 0.64; kidney, 5.8 ± 0.53 vs. 6.2 ± 0.25 nmol/min/mg protein, respectively). The oxy-Hb levels had a dynamic change after resuscitation, and they had a significant association with the RCR of the brain mitochondria (r = 0.8311, p = 0.0102), whereas deoxy-Hb and TOI did not (r = -0.1252, p = 0.7677; r = 0.4186, p = 0.302, respectively). The RCRs of the kidney mitochondria did not have a significant association with CBO (oxy-Hb, r = -0.1087, p = 0.7977; deoxy-Hb, r = 0.1565, p = 0.7113; TOI, r = -0.1687, p = 0.6896, respectively). The brain mitochondrial respiratory dysfunction occurred over time, and it was seen at the time points between 10 and 20 min after CPR. The oxy-Hb level was associated with brain mitochondrial dysfunction during the early post-resuscitation period.


Asunto(s)
Encefalopatías , Reanimación Cardiopulmonar , Paro Cardíaco , Animales , Masculino , Ratas , Oxihemoglobinas/metabolismo , Ratas Sprague-Dawley , Encéfalo/metabolismo , Encefalopatías/metabolismo , Mitocondrias/metabolismo , Adenosina Difosfato/metabolismo
12.
Clin Ther ; 44(11): 1471-1479, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220676

RESUMEN

PURPOSE: To develop a system that is equivalent to the gold standard Douglas Bag (DB) technique for measuring oxygen consumption (V̇o2), carbon dioxide generation (V̇co2), and respiratory quotient (RQ) and to validate its use in clinical settings. METHODS: This was a prospective, observational study conducted at a suburban, quaternary care teaching hospital. Healthy volunteers and patients 18 years or older who received mechanical ventilation were enrolled. FINDINGS: Data from 3 healthy volunteers and 7 patients were analyzed in this study. The interrater reliability between the automation device and DB methods were 0.999, 0.993, and 0.993 for V̇o2, V̇co2, and RQ, respectively. In healthy volunteers, mean (SD) V̇o2, V̇co2, and RQ measured by DB were 411 (100) mL/min, 288 (79) mL/min, and 0.70 (0.03) at high fraction of inspired oxygen (Fio2) and 323 (46) mL/min, 280 (45) mL/min, and 0.85 (0.05) at normal Fio2, respectively. V̇o2 was significantly higher (P < 0.05) and RQ was lower (P < 0.01) in the high Fio2 group as compared to those in the normal Fio2 group. Values measured by the automation system were 227 (31) mL/min, 141 (18) mL/min, and 0.62 (0.04) at high Fio2 and 209 (25) mL/min, 147 (18) mL/min, and 0.70 (0.06) at normal Fio2, respectively. RQ was significantly lower (P < 0.05) in the high Fio2 group as compared to the normal Fio2 group. We also successfully performed continuous and repeat measurements by using the device. The longest measurement reached 12 hours 15 minutes, including 50 cycles of repeat measurements that are equivalent to the DB technique as described above. IMPLICATIONS: We developed an automation system that enables repeat measurements of V̇o2, V̇co2, and RQ, and the accuracy was equivalent to the DB technique. High Fio2 may decrease RQ because of an increase in V̇o2.


Asunto(s)
Oxígeno , Respiración Artificial , Humanos , Calorimetría Indirecta/métodos , Reproducibilidad de los Resultados , Estudios Prospectivos , Automatización
13.
Ann Neurol ; 91(3): 389-403, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34979595

RESUMEN

OBJECTIVE: Cardiac arrest (CA) is a major health burden with brain damage being a significant contributor to mortality. We found lysophosphatidylcholine (LPC), including a species containing docosahexaenoic acid (LPC-DHA), was significantly decreased in plasma post-CA, supplementation of which significantly improved neurological outcomes. The aim of this study is to understand the protective role of LPC-DHA supplementation on the brain post-CA. METHODS: We first evaluated associations between the plasma level of LPC-DHA and neurological injury and outcomes of human patients with CA. We then utilized a rat CA model and cell cultures to investigate therapeutic and mechanistic aspects of plasma LPC-DHA supplementation. RESULTS: We found that decreased plasma LPC-DHA was strongly associated with neurological outcomes and disappearance of the difference between gray and white matter in the brain after CA in human patients. In rats, the decreased plasma LPC-DHA was associated with decreased levels of brain LPC-DHA after CA, and supplementing plasma LPC-DHA normalized brain levels of LPC-DHA and alleviated neuronal cell death, activation of astrocytes, and expression of various inflammatory and mitochondrial dynamics genes. We also observed deceased severity of metabolic alterations with LPC-DHA supplementation using untargeted metabolomics analysis. Furthermore, LPC treatment showed a similar protective effect for neurons and astrocytes in mixed primary brain cell cultures. INTERPRETATION: The observed neuroprotection accompanied with normalized brain LPC-DHA level by plasma supplementation implicate the importance of preventing the decrease of brain LPC-DHA post-CA for attenuating brain injury. Furthermore, the data supports the causative role of decreased plasma LPC-DHA for brain damage after CA. ANN NEUROL 2022;91:389-403.


Asunto(s)
Astrocitos/efectos de los fármacos , Lesiones Encefálicas/tratamiento farmacológico , Muerte Celular/efectos de los fármacos , Paro Cardíaco/complicaciones , Lisofosfatidilcolinas/administración & dosificación , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Animales , Encéfalo/efectos de los fármacos , Lesiones Encefálicas/sangre , Lesiones Encefálicas/etiología , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/sangre , Ácidos Docosahexaenoicos/uso terapéutico , Humanos , Lisofosfatidilcolinas/sangre , Lisofosfatidilcolinas/uso terapéutico , Masculino , Fármacos Neuroprotectores/uso terapéutico , Ratas , Ratas Sprague-Dawley
14.
J Transl Med ; 19(1): 462, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34781966

RESUMEN

BACKGROUND: Despite the benefits of extracorporeal cardiopulmonary resuscitation (ECPR) in cohorts of selected patients with cardiac arrest (CA), extracorporeal membrane oxygenation (ECMO) includes an artificial oxygenation membrane and circuits that contact the circulating blood and induce excessive oxidative stress and inflammatory responses, resulting in coagulopathy and endothelial cell damage. There is currently no pharmacological treatment that has been proven to improve outcomes after CA/ECPR. We aimed to test the hypothesis that administration of hydrogen gas (H2) combined with ECPR could improve outcomes after CA/ECPR in rats. METHODS: Rats were subjected to 20 min of asphyxial CA and were resuscitated by ECPR. Mechanical ventilation (MV) was initiated at the beginning of ECPR. Animals were randomly assigned to the placebo or H2 gas treatment groups. The supplement gas was administered with O2 through the ECMO membrane and MV. Survival time, electroencephalography (EEG), brain functional status, and brain tissue oxygenation were measured. Changes in the plasma levels of syndecan-1 (a marker of endothelial damage), multiple cytokines, chemokines, and metabolites were also evaluated. RESULTS: The survival rate at 4 h was 77.8% (7 out of 9) in the H2 group and 22.2% (2 out of 9) in the placebo group. The Kaplan-Meier analysis showed that H2 significantly improved the 4 h-survival endpoint (log-rank P = 0.025 vs. placebo). All animals treated with H2 regained EEG activity, whereas no recovery was observed in animals treated with placebo. H2 therapy markedly improved intra-resuscitation brain tissue oxygenation and prevented an increase in central venous pressure after ECPR. H2 attenuated an increase in syndecan-1 levels and enhanced an increase in interleukin-10, vascular endothelial growth factor, and leptin levels after ECPR. Metabolomics analysis identified significant changes at 2 h after CA/ECPR between the two groups, particularly in D-glutamine and D-glutamate metabolism. CONCLUSIONS: H2 therapy improved mortality in highly lethal CA rats rescued by ECPR and helped recover brain electrical activity. The underlying mechanism might be linked to protective effects against endothelial damage. Further studies are warranted to elucidate the mechanisms responsible for the beneficial effects of H2 on ischemia-reperfusion injury in critically ill patients who require ECMO support.


Asunto(s)
Reanimación Cardiopulmonar , Oxigenación por Membrana Extracorpórea , Paro Cardíaco , Animales , Paro Cardíaco/complicaciones , Paro Cardíaco/terapia , Humanos , Hidrógeno , Ratas , Factor A de Crecimiento Endotelial Vascular
15.
Front Med (Lausanne) ; 8: 638075, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150792

RESUMEN

This case series reviews four critically ill patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [coronavirus disease 2019 (COVID-19)] suffering from pneumatosis intestinalis (PI) during their hospital admission. All patients received the biological agent tocilizumab (TCZ), an interleukin (IL)-6 antagonist, as an experimental treatment for COVID-19 before developing PI. COVID-19 and TCZ have been independently linked to PI risk, yet the cause of this relationship is unknown and under speculation. PI is a rare condition, defined as the presence of gas in the intestinal wall, and although its pathogenesis is poorly understood, intestinal ischemia is one of its causative agents. Based on COVID-19's association with vasculopathic and ischemic insults, and IL-6's protective role in intestinal epithelial ischemia-reperfusion injury, an adverse synergistic association of COVID-19 and TCZ can be proposed in the setting of PI. To our knowledge, this is the first published, single center, case series of pneumatosis intestinalis in COVID-19 patients who received tocilizumab therapy.

16.
Sci Rep ; 11(1): 12815, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140533

RESUMEN

Using a new method for measuring the molecular ratio (R) of inhalation to exhalation, we investigated the effect of high fraction of inspired oxygen (FIO2) on oxygen consumption (VO2), carbon dioxide generation (VCO2), and respiratory quotient (RQ) in mechanically ventilated rats. Twelve rats were equally assigned into two groups by anesthetics: intravenous midazolam/fentanyl vs. inhaled isoflurane. R, VO2, VCO2, and RQ were measured at FIO2 0.3 or 1.0. R error was ± 0.003. R was 1.0099 ± 0.0023 with isoflurane and 1.0074 ± 0.0018 with midazolam/fentanyl. R was 1.0081 ± 0.0017 at an FIO2 of 0.3 and 1.0092 ± 0.0029 at an FIO2 of 1.0. There were no differences in VCO2 among the groups. VO2 increased at FIO2 1.0, which was more notable when midazolam/fentanyl was used (isoflurane-FIO2 0.3: 15.4 ± 1.1; isoflurane-FIO2 1.0: 17.2 ± 1.8; midazolam/fentanyl-FIO2 0.3: 15.4 ± 1.1; midazolam/fentanyl-FIO2 1.0: 21.0 ± 2.2 mL/kg/min at STP). The RQ was lower at FIO2 1.0 than FIO2 0.3 (isoflurane-FIO2 0.3: 0.80 ± 0.07; isoflurane-FIO2 1.0: 0.71 ± 0.05; midazolam/fentanyl-FIO2 0.3: 0.79 ± 0.03; midazolam/fentanyl-FIO2 1.0: 0.59 ± 0.04). R was not affected by either anesthetics or FIO2. Inspired 100% O2 increased VO2 and decreased RQ, which might be more remarkable when midazolam/fentanyl was used.


Asunto(s)
Espiración/fisiología , Inhalación/fisiología , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Anestésicos por Inhalación/farmacología , Animales , Dióxido de Carbono/metabolismo , Espiración/efectos de los fármacos , Inhalación/efectos de los fármacos , Masculino , Consumo de Oxígeno/efectos de los fármacos , Presión , Ratas Sprague-Dawley , Respiración Artificial
17.
Resuscitation ; 164: 46-53, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34023426

RESUMEN

BACKGROUND: At lower ambient temperature, patients with out-of-hospital cardiac arrest (OHCA) easily experience hypothermia. Hypothermia has shown to improve the rate of successful return of spontaneous circulation (ROSC) in animal models. We hypothesized that lower temperature affects the impact of bystander cardiopulmonary resuscitation (CPR) on the increased odds of a favorable neurological outcome post-OHCA. METHODS: This study used information collected by the prospective, nationwide, Utstein registry to examine data from 352,689 adult patients who experienced OHCA from 2012 to 2016 in Japan. The primary outcome was a 1-month favorable neurological outcomes. Multivariable logistic regression analyses were conducted to test the impact of bystander CPR according to the temperature on the favorable outcome. RESULTS: A total of 201,111 patients with OHCA were included in the complete case analysis. The lower temperature group had lower proportions of receiving bystander CPR (46.5 vs. 47.9%) and having favorable outcome (2.1 vs 2.8%) than those in the higher group. Multivariable analysis revealed that bystander CPR at lower temperatures was significantly associated with favorable outcomes (adjusted odds ratio, 1.22; 95% CI, 1.09-1.37), whereas bystander CPR at higher temperatures was not associated with favorable outcomes (1.02; 0.92-1.13). The nonlinear relationship using a spline curve in the multivariable model revealed that odds ratio of favorable neurological outcomes associated with bystander CPR increased as the temperature decreased. CONCLUSION: Bystander CPR was associated with favorable neurological outcomes at lower temperatures. The odds of a favorable outcome associated with bystander CPR increased as the temperature decreased.


Asunto(s)
Reanimación Cardiopulmonar , Servicios Médicos de Urgencia , Paro Cardíaco Extrahospitalario , Adulto , Humanos , Japón/epidemiología , Paro Cardíaco Extrahospitalario/terapia , Estudios Prospectivos , Sistema de Registros , Temperatura
18.
J Transl Med ; 19(1): 214, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001191

RESUMEN

BACKGROUND: Mitochondria are essential organelles that provide energy for cellular functions, participate in cellular signaling and growth, and facilitate cell death. Based on their multifactorial roles, mitochondria are also critical in the progression of critical illnesses. Transplantation of mitochondria has been reported as a potential promising approach to treat critical illnesses, particularly ischemia reperfusion injury (IRI). However, a systematic review of the relevant literature has not been conducted to date. Here, we systematically reviewed the animal and human studies relevant to IRI to summarize the evidence for mitochondrial transplantation. METHODS: We searched MEDLINE, the Cochrane library, and Embase and performed a systematic review of mitochondrial transplantation for IRI in both preclinical and clinical studies. We developed a search strategy using a combination of keywords and Medical Subject Heading/Emtree terms. Studies including cell-mediated transfer of mitochondria as a transfer method were excluded. Data were extracted to a tailored template, and data synthesis was descriptive because the data were not suitable for meta-analysis. RESULTS: Overall, we identified 20 animal studies and two human studies. Among animal studies, 14 (70%) studies focused on either brain or heart IRI. Both autograft and allograft mitochondrial transplantation were used in 17 (85%) animal studies. The designs of the animal studies were heterogeneous in terms of the route of administration, timing of transplantation, and dosage used. Twelve (60%) studies were performed in a blinded manner. All animal studies reported that mitochondrial transplantation markedly mitigated IRI in the target tissues, but there was variation in biological biomarkers and pathological changes. The human studies were conducted with a single-arm, unblinded design, in which autologous mitochondrial transplantation was applied to pediatric patients who required extracorporeal membrane oxygenation (ECMO) for IRI-associated myocardial dysfunction after cardiac surgery. CONCLUSION: The evidence gathered from our systematic review supports the potential beneficial effects of mitochondrial transplantation after IRI, but its clinical translation remains limited. Further investigations are thus required to explore the mechanisms of action and patient outcomes in critical settings after mitochondrial transplantation. Systematic review registration The study was registered at UMIN under the registration number UMIN000043347.


Asunto(s)
Daño por Reperfusión , Animales , Muerte Celular , Niño , Humanos , Mitocondrias , Daño por Reperfusión/terapia
19.
Front Med (Lausanne) ; 8: 666735, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912580

RESUMEN

Background: Identification of the mechanisms underlying mitochondrial dysfunction is key to understanding the pathophysiology of acute injuries such as cardiac arrest (CA); however, effective methods for measurement of mitochondrial function associated with mitochondrial isolation have been debated for a long time. This study aimed to evaluate the dysregulation of mitochondrial respiratory function after CA while testing the sampling bias that might be induced by the mitochondrial isolation method. Materials and Methods: Adult rats were subjected to 10-min asphyxia-induced CA. 30 min after resuscitation, the brain and kidney mitochondria from animals in sham and CA groups were isolated (n = 8, each). The mitochondrial quantity, expressed as protein concentration (isolation yields), was determined, and the oxygen consumption rates were measured. ADP-dependent (state-3) and ADP-limited (state-4) respiration activities were compared between the groups. Mitochondrial quantity was evaluated based on citrate synthase (CS) activity and cytochrome c concentration, measured independent of the isolation yields. Results: The state-3 respiration activity and isolation yield in the CA group were significantly lower than those in the sham group (brain, p < 0.01; kidney, p < 0.001). The CS activity was significantly lower in the CA group as compared to that in the sham group (brain, p < 0.01; kidney, p < 0.01). Cytochrome c levels in the CA group showed a similar trend (brain, p = 0.08; kidney, p = 0.25). Conclusions: CA decreased mitochondrial respiration activity and the quantity of mitochondria isolated from the tissues. Owing to the nature of fragmented or damaged mitochondrial membranes caused by acute injury, there is a potential loss of disrupted mitochondria. Thus, it is plausible that the mitochondrial function in the acute-injury model may be underestimated as this loss is not considered.

20.
J Am Heart Assoc ; 10(7): e018773, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33775109

RESUMEN

Background Cardiac arrest (CA) can induce oxidative stress after resuscitation, which causes cellular and organ damage. We hypothesized that post-resuscitation normoxic therapy would protect organs against oxidative stress and improve oxygen metabolism and survival. We tested the oxygen-sensitive reactive oxygen species from mitochondria to determine the association with hyperoxia-induced oxidative stress. Methods and Results Sprague-Dawley rats were subjected to 10-minute asphyxia-induced CA with a fraction of inspired O2 of 0.3 or 1.0 (normoxia versus hyperoxia, respectively) after resuscitation. The survival rate at 48 hours was higher in the normoxia group than in the hyperoxia group (77% versus 28%, P<0.01), and normoxia gave a lower neurological deficit score (359±140 versus 452±85, P<0.05) and wet to dry weight ratio (4.6±0.4 versus 5.6±0.5, P<0.01). Oxidative stress was correlated with increased oxygen levels: normoxia resulted in a significant decrease in oxidative stress across multiple organs and lower oxygen consumption resulting in normalized respiratory quotient (0.81±0.05 versus 0.58±0.03, P<0.01). After CA, mitochondrial reactive oxygen species increased by ≈2-fold under hyperoxia. Heme oxygenase expression was also oxygen-sensitive, but it was paradoxically low in the lung after CA. In contrast, the HMGB-1 (high mobility group box-1) protein was not oxygen-sensitive and was induced by CA. Conclusions Post-resuscitation normoxic therapy attenuated the oxidative stress in multiple organs and improved post-CA organ injury, oxygen metabolism, and survival. Additionally, post-CA hyperoxia increased the mitochondrial reactive oxygen species and activated the antioxidation system.


Asunto(s)
Reanimación Cardiopulmonar/efectos adversos , Paro Cardíaco/terapia , Estrés Oxidativo , Terapia por Inhalación de Oxígeno/métodos , Oxígeno/metabolismo , Animales , Modelos Animales de Enfermedad , Paro Cardíaco/metabolismo , Masculino , Consumo de Oxígeno , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...