Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Pharm Bull (Tokyo) ; 72(5): 471-474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38749738

RESUMEN

The solid-state properties of drug candidates play a crucial role in their selection. Quality control of active pharmaceutical ingredients (APIs) based on their structural information involves ensuring a consistent crystal form and controlling water and residual solvent contents. However, traditional crystallographic techniques have limitations and require high-quality single crystals for structural analysis. Microcrystal electron diffraction (microED) overcomes these challenges by analyzing difficult-to-crystallize or small-quantity samples, making it valuable for efficient drug development. In this study, microED analysis was able to rapidly determine the configuration of two crystal forms (Forms 1, 2) of the API ranitidine hydrochloride. The structures obtained with microED are consistent with previous structures determined by X-ray diffraction, indicating microED is a useful tool for rapidly analyzing molecular structures in drug development and materials science research.


Asunto(s)
Ranitidina , Ranitidina/química , Cristalización , Estructura Molecular , Electrones
2.
Angew Chem Int Ed Engl ; 63(21): e202401005, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38584128

RESUMEN

Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure-activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a "modular design" strategy to construct electrochemically stable semiconducting PCP, namely, Fe-pyNDI, which incorporates a chain-type Fe-pyrazole metal cluster and π-stacking column with effective synergistic effects. The three-dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π-stacking column in Fe-pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe-pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 µmol h-1 cm-2 (14677 µg h-1 mgcat. -1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state-of-the-art electrocatalysts. The in-situ X-ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe-pyNDI can be kept, while part of the Fe3+ in Fe-pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR.

3.
Exp Cell Res ; 429(2): 113668, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245582

RESUMEN

The close apposition between two different organelles is critical in essential processes such as ion homeostasis, signaling, and lipid transition. However, information related to the structural features of membrane contact sites (MCSs) is limited. This study used immuno-electron microscopy and immuno-electron tomography (I-ET) to analyze the two- and three-dimensional structures of the late endosome-mitochondria contact sites in placental cells. Filamentous structures or tethers were identified that connected the late endosomes and mitochondria. Lamp1 antibody-labeled I-ET revealed enrichment of tethers in the MCSs. The cholesterol-binding endosomal protein metastatic lymph node 64 (MLN64) encoded by STARD3 was required for the formation of this apposition. The distance of the late endosome-mitochondria contact sites was <20 nm, shorter than that in STARD3-knockdown cells (<150 nm). The perturbation of cholesterol egress from the endosomes induced by U18666A treatment produced a longer distance in the contact sites than that in knockdown cells. The late endosome-mitochondria tethers failed to form correctly in STARD3-knockdown cells. Our results unravel the role of MLN64 involved in MCSs between late endosomes and mitochondria in placental cells.


Asunto(s)
Proteínas Portadoras , Proteínas de la Membrana , Femenino , Embarazo , Humanos , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Placenta/metabolismo , Mitocondrias/metabolismo , Endosomas/metabolismo , Membranas Mitocondriales/metabolismo , Colesterol/metabolismo
4.
Angew Chem Int Ed Engl ; 62(2): e202215234, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36377418

RESUMEN

Exploring new porous coordination polymers (PCPs) that have tunable structure and conductivity is attractive but remains challenging. Herein, fine pore structure engineering by ligand conformation control of naphthalene diimide (NDI)-based semiconducting PCPs with π stacking-dependent conductivity tunability is achieved. The π stacking distances and ligand conformation in these isoreticular PCPs were modulated by employing metal centers with different coordination geometries. As a result, three conjugated PCPs (Co-pyNDI, Ni-pyNDI, and Zn-pyNDI) with varying pore structure and conductivity were obtained. Their crystal structures were determined by three-dimensional electron diffraction. The through-space charge transfer and tunable pore structure in these PCPs result in modulated selectivity and sensitivity in gas sensing. Zn-pyNDI can serve as a room-temperature operable chemiresistive sensor selective to acetone.

5.
Molecules ; 26(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361806

RESUMEN

Three-dimensional electron diffraction crystallography (microED) can solve structures of sub-micrometer crystals, which are too small for single crystal X-ray crystallography. However, R factors for the microED-based structures are generally high because of dynamic scattering. That means R factor may not be reliable provided that kinetic analysis is used. Consequently, there remains ambiguity to locate hydrogens and to assign nuclei with close atomic numbers, like carbon, nitrogen, and oxygen. Herein, we employed microED and ssNMR dipolar-based experiments together with spin dynamics numerical simulations. The NMR dipolar-based experiments were 1H-14N phase-modulated rotational-echo saturation-pulse double-resonance (PM-S-RESPDOR) and 1H-1H selective recoupling of proton (SERP) experiments. The former examined the dephasing effect of a specific 1H resonance under multiple 1H-14N dipolar couplings. The latter examined the selective polarization transfer between a 1H-1H pair. The structure was solved by microED and then validated by evaluating the agreement between experimental and calculated dipolar-based NMR results. As the measurements were performed on 1H and 14N, the method can be employed for natural abundance samples. Furthermore, the whole validation procedure was conducted at 293 K unlike widely used chemical shift calculation at 0 K using the GIPAW method. This combined method was demonstrated on monoclinic l-histidine.

6.
ACS Macro Lett ; 10(7): 978-983, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35549187

RESUMEN

Hexagonally packed coaxial triply helical domains with a mesoscopic length scale in matrices were created from an S1IS2P tetrablock terpolymer/Sh homopolymer blend system, wherein S1, S2, and Sh denote polystyrene, I is polyisoprene, and P represents poly(2-vinylpyridine). Two terpolymers, i.e., S1IS2P-3 (S1/I/S2/P = 0.50/0.17/0.19/0.14, M = 134k) and S1IS2P-4 (S1/I/S2/P = 0.58/0.16/0.10/0.16, M = 173k), were blended with Sh (M = 3k) at various concentrations. In the S1IS2P-3/Sh = 80/20 blend, the helical domain of P (o.d.= 19 nm; h.p. = 34 nm) was displayed by TEM, and the helical I phase (o.d. = 55 nm; i.d. = 29 nm; h.p. = 34 nm) was clearly demonstrated by 3D-TEM tomography. Essentially the same structure was confirmed to be created from the S1IS2P-4/Sh blend. These findings point out that S2 chains fill the gap between the I and P helices, and hence the intermediate S phase also has a helical nature. Moreover, it is worth noting that grains composed of hexagonally packed helices reveal homochirality.


Asunto(s)
Poliestirenos , Poliestirenos/química
7.
Micron ; 140: 102956, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33120162

RESUMEN

Electron tomography (ET) has been used for quantitative measurement of shape and size of objects in three dimensions (3D) for many years. However, systematic investigation of repeatability and reproducibility of ET has not been evaluated in detail. To assess the reproducibility and repeatability of a protocol for measuring size and three-dimensional (3D) shape parameters for nanoparticles (NPs) by ET, an inter-laboratory comparison (ILC) has been performed. The ILC included six laboratories and six instruments models from three instrument manufacturers following a standard measurement protocol. A technical specification describing the normative steps of the protocol is published by the International Standards Organization (ISO). Gold NPs with 30 nm nominal diameter contained within a rod-shaped carbon support were measured. The use of a rod-shaped sample support eliminated the missing wedge effect in the experimental tilt series of projected images for improved quantification. A total of 443 NPs were initially measured by NRC-NANO and then 115 out of the 443 NPs were measured by five other labs to compare measurands such as the Volume (V), maximum Feret diameter (Fmax), minimum Feret diameter (Fmin), volume-equivalent diameter (Deq) and aspect ratio (Frat) of the NPs. The results of the five labs were compared with the results obtained at NRC-NANO. The maximum disagreement in measurements of Fmin and Fmax obtained by the participating labs did not exceed 7 %. The measured Deq was between 27.5 nm and 30.3 nm in agreement with the NP manufacturer's specification (28 nm-32 nm). In addition to the above, the influence of the missing wedge effect and beam-induced NP movement was quantified based on the differences of the results between labs.

8.
Nat Commun ; 10(1): 3537, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388004

RESUMEN

Understanding hydrogen-bonding networks in nanocrystals and microcrystals that are too small for X-ray diffractometry is a challenge. Although electron diffraction (ED) or electron 3D crystallography are applicable to determining the structures of such nanocrystals owing to their strong scattering power, these techniques still lead to ambiguities in the hydrogen atom positions and misassignments of atoms with similar atomic numbers such as carbon, nitrogen, and oxygen. Here, we propose a technique combining ED, solid-state NMR (SSNMR), and first-principles quantum calculations to overcome these limitations. The rotational ED method is first used to determine the positions of the non-hydrogen atoms, and SSNMR is then applied to ascertain the hydrogen atom positions and assign the carbon, nitrogen, and oxygen atoms via the NMR signals for 1H, 13C, 14N, and 15N with the aid of quantum computations. This approach elucidates the hydrogen-bonding networks in L-histidine and cimetidine form B whose structure was previously unknown.

9.
J Chem Phys ; 133(19): 194901, 2010 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-21090869

RESUMEN

The effect of molecular weight distribution of ABC linear terpolymers on the formation of periodic structures was investigated. Three poly(isoprene-b-styrene-b-2-vinylpridine) triblockterpolymers with molecular weights of 26k, 96k, and 150k were blended variously. Three-phase, four-layer lamellar structures were observed when polydispersity index (PDI) was low, but it has been found that simple lamellar structure with flat surface transforms into an undulated lamellar one, where two interfaces, i.e., I/S and S/P, are both undulated, and they are synchronizing each other if PDI exceeds the critical value. This new structure could be formed due to the periodic and "weak" localization of three chains along the domain interfaces, which produces periodic surfaces with nonconstant mean curvatures. With further increase of PDI, the blend macroscopically phase-separated into different microphase-separated structures.

10.
J Electron Microsc (Tokyo) ; 59 Suppl 1: S45-53, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20591817

RESUMEN

It has been shown that scanning transmission electron microtomography (STEMT) is quite effective for observing specimens with thicknesses on the order of micrometers in three dimensions (3D). In STEMT, the specimen is scanned using a focused electron beam, and the electrons from the convergence point are detected at the detector placed at a certain detection angle. Until recently, a wide detection angle corresponding to the mode often called the dark-field (DF) mode was mainly used. Although the detection angle can vary and is one of the crucial experimental factors in STEMT, its effect on 3D reconstruction has never been discussed from either an experimental or a theoretical viewpoint. Moreover, the effectiveness of another mode of electron tomography, transmission electron microtomography (TEMT), is not clear. In the present study, a polymeric specimen, an acrylonitrile butadiene styrene resin, with a thickness of ~1 mum and a fixed volume was observed using three different modes, namely, TEMT, small detection-angle STEMT referred to as bright-field STEMT, and DF-STEMT, in order to examine their advantages and disadvantages by observing multiple scattering of electrons inside the specimen.

11.
Biomacromolecules ; 9(2): 537-42, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18163581

RESUMEN

Three-dimensional structures of actin bundles formed with polycations were observed by using transmission electron microtomography and atomic force microscopy. We found, for the first time, that the cross-sectional morphology of actin bundles depends on the polycation species and ionic strength, while it is insensitive to the degree of polymerization and concentration of polycation. Actin bundles formed with poly-N-[3-(dimethylamino)propyl] acrylamide methyl chloride quaternary show a ribbon-like cross-sectional morphology in low salt concentrations that changes to cylindrical cross-sectional morphology with hexagonal packing of the actin filaments in high salt concentrations. Contrastingly, actin bundles formed with poly-L-lysine show triangular cross-sectional morphology with hexagonal packing of the actin filaments. These variations in cross-sectional morphology are discussed in terms of anisotropy in the electrostatic energy barrier.


Asunto(s)
Actinas/química , Imagenología Tridimensional , Poliaminas/química , Citoesqueleto de Actina/química , Actinas/análisis , Animales , Imagenología Tridimensional/métodos , Estructura Molecular , Pectinidae , Poliaminas/análisis , Polielectrolitos
12.
J Electron Microsc (Tokyo) ; 54(3): 279-86, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16186181

RESUMEN

Magnetization distribution in nanocomposite Nd4.5(Fe,Cr)77B18.5 was studied by electron holography and computer simulation. In order to understand the detailed magnetization distribution, the magnetic flux distribution was calculated taking into account the magnetic charge or the stray field on the basis of magnetization models consisting of small magnetic dipoles and was compared with that in reconstructed phase images experimentally observed. Through the comparison, the characteristic feature in the distribution of the magnetization distribution in the nanocomposite magnetic materials was clarified, and the distribution was found to well correspond to their magnetic properties. It is pointed out that for understanding magnetization, the interpretation of reconstructed phase images should be done through computer simulation just as the analysis of high-resolution electron microscope images. Eventually, it was demonstrated that electron holography with computer simulation is quite useful to analyze detailed magnetization distribution in nanocrystalline magnetic materials at the nanometer scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...