Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 862: 160739, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502686

RESUMEN

The European brown trout, Salmo trutta, is a cold-adapted fish reported as a Least Concern species in the IUCN Red List. This species colonized new territories from southern refuges during the last glacial melting, but during the 20th century suffered from anthropic impacts on its habitats. The long-time survival of the species relies on the genetic diversity within and among populations. Brown trout is among the genetically most diverse vertebrate species; however, native populations in Mediterranean rivers have dramatically suffered of introgressive hybridization from extensive releases of evolutionary distant non-native Atlantic stocks. In addition, in Mediterranean rivers climate change will result in unsuitable conditions for the species during the 21st century. Using brown trout populations at the headstreams of a Pyrenean river as a model, this paper revised how hatchery releases have affected the native gene pools and how environmental and climatic variables controlled the amount of local introgression at intra-basin level. Introgressive hybridization was detected in all studied sites. Ten times larger divergence was observed among populations at tributaries than among populations along the main stem. A highly impacted population distributed in a long transect in the main stem suggested that hatchery fish move towards the main stem wherever released. From already highly impacted populations and despite the cessation of hatchery releases, warmer temperatures and lower precipitation expected from climate change will extend the introgressive hybridization along the basin, contributing to the extinction of the native gene pools. Based on available morphological distinction of native, hatchery and hybrid brown trout, we advocate the involvement of regional social groups (e.g. riverside dwellers, anglers, conservationists, hikers) in citizen science programs to detect the spread of non-native phenotypes along the rivers. These are cheap and fast methods to collaborate with fishery managers in the preservation and recovery of the regional native populations.


Asunto(s)
Pool de Genes , Ríos , Animales , Trucha/genética , Ecosistema , Hong Kong
2.
PeerJ ; 6: e5730, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30345173

RESUMEN

Dispersal is a critical determinant of animal distribution and population dynamics, and is essential information for management planning. We studied the movement patterns and the influence of habitat and biotic factors on Mediterranean brown trout (Salmo trutta) by mark-recapture methods in three headwater streams of the Ebro Basin (NE Iberian Peninsula). Fish were sampled by electrofishing on five occasions over 18-24 months and movements of over 3,000 individually tagged trout (age 1+ onwards) were recorded. Most of the tagged fish exhibited limited movement and were recaptured within 100 m from the initial capture section. Small seasonal differences in the movement pattern were observed, but in two of the streams, displacement distances increased prior the spawning period in autumn. The frequency distributions of dispersal distances were highly leptokurtic and skewed to the right and fitted well to a two-group exponential model, thus trout populations were composed of mobile and stationary individuals, the latter being the predominant component in the populations (71.1-87.5% of individuals). The mean dispersal distances, for fish captured at least in three sampling events, ranged 20.7-45.4 m for the stationary group and 229.4-540.5 m for the mobile group. Moving brown trout were larger than non-moving individuals and exhibited higher growth rates in two of the streams. Habitat features were not consistently linked to movement rates, but there were some interaction effects between stream and habitat characteristics such as depth, cover and water velocity.

3.
PLoS One ; 12(7): e0181697, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28750027

RESUMEN

The mechanisms that can contribute in the fish movement strategies and the associated behaviour can be complex and related to the physiology, genetic and ecology of each species. In the case of the brown trout (Salmo trutta), in recent research works, individual differences in mobility have been observed in a population living in a high mountain river reach (Pyrenees, NE Spain). The population is mostly sedentary but a small percentage of individuals exhibit a mobile behavior, mainly upstream movements. Metabolomics can reflect changes in the physiological process and can determine different profiles depending on behaviour. Here, a non-targeted metabolomics approach was used to find possible changes in the blood metabolomic profile of S. trutta related to its movement behaviour, using a minimally invasive sampling. Results showed a differentiation in the metabolomic profiles of the trouts and different level concentrations of some metabolites (e.g. cortisol) according to the home range classification (pattern of movements: sedentary or mobile). The change in metabolomic profiles can generally occur during the upstream movement and probably reflects the changes in metabolite profile from the non-mobile season to mobile season. This study reveals the contribution of the metabolomic analyses to better understand the behaviour of organisms.


Asunto(s)
Trucha/metabolismo , Animales , Conducta Animal , Ecosistema , Femenino , Masculino , Redes y Vías Metabólicas , Metaboloma , Ríos , España , Natación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...