Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(27): e2304441120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37368926

RESUMEN

Eating a varied diet is a central tenet of good nutrition. Here, we develop a molecular tool to quantify human dietary plant diversity by applying DNA metabarcoding with the chloroplast trnL-P6 marker to 1,029 fecal samples from 324 participants across two interventional feeding studies and three observational cohorts. The number of plant taxa per sample (plant metabarcoding richness or pMR) correlated with recorded intakes in interventional diets and with indices calculated from a food frequency questionnaire in typical diets (ρ = 0.40 to 0.63). In adolescents unable to collect validated dietary survey data, trnL metabarcoding detected 111 plant taxa, with 86 consumed by more than one individual and four (wheat, chocolate, corn, and potato family) consumed by >70% of individuals. Adolescent pMR was associated with age and household income, replicating prior epidemiologic findings. Overall, trnL metabarcoding promises an objective and accurate measure of the number and types of plants consumed that is applicable to diverse human populations.


Asunto(s)
Dieta , Estado Nutricional , Adolescente , Humanos , ADN de Plantas/genética , Plantas/genética , Código de Barras del ADN Taxonómico
2.
Nat Chem Biol ; 18(11): 1245-1252, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36050493

RESUMEN

The functions of many microbial communities exhibit remarkable stability despite fluctuations in the compositions of these communities. To date, a mechanistic understanding of this function-composition decoupling is lacking. Statistical mechanisms have been commonly hypothesized to explain such decoupling. Here, we proposed that dynamic mechanisms, mediated by horizontal gene transfer (HGT), also enable the independence of functions from the compositions of microbial communities. We combined theoretical analysis with numerical simulations to illustrate that HGT rates can determine the stability of gene abundance in microbial communities. We further validated these predictions using engineered microbial consortia of different complexities transferring one or more than a dozen clinically isolated plasmids, as well as through the reanalysis of data from the literature. Our results demonstrate a generalizable strategy to program the gene stability of microbial communities.


Asunto(s)
Transferencia de Gen Horizontal , Microbiota , Microbiota/genética , Plásmidos/genética
3.
Front Immunol ; 12: 741837, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777354

RESUMEN

Viruses cause a wide spectrum of clinical disease, the majority being acute respiratory infections (ARI). In most cases, ARI symptoms are similar for different viruses although severity can be variable. The objective of this study was to understand the shared and unique elements of the host transcriptional response to different viral pathogens. We identified 162 subjects in the US and Sri Lanka with infections due to influenza, enterovirus/rhinovirus, human metapneumovirus, dengue virus, cytomegalovirus, Epstein Barr Virus, or adenovirus. Our dataset allowed us to identify common pathways at the molecular level as well as virus-specific differences in the host immune response. Conserved elements of the host response to these viral infections highlighted the importance of interferon pathway activation. However, the magnitude of the responses varied between pathogens. We also identified virus-specific responses to influenza, enterovirus/rhinovirus, and dengue infections. Influenza-specific differentially expressed genes (DEG) revealed up-regulation of pathways related to viral defense and down-regulation of pathways related to T cell and neutrophil responses. Functional analysis of entero/rhinovirus-specific DEGs revealed up-regulation of pathways for neutrophil activation, negative regulation of immune response, and p38MAPK cascade and down-regulation of virus defenses and complement activation. Functional analysis of dengue-specific up-regulated DEGs showed enrichment of pathways for DNA replication and cell division whereas down-regulated DEGs were mainly associated with erythrocyte and myeloid cell homeostasis, reactive oxygen and peroxide metabolic processes. In conclusion, our study will contribute to a better understanding of molecular mechanisms to viral infections in humans and the identification of biomarkers to distinguish different types of viral infections.


Asunto(s)
Interferones/genética , Infecciones del Sistema Respiratorio/inmunología , Linfocitos T/fisiología , Virosis/genética , Virus/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Activación de Complemento , Femenino , Humanos , Inmunidad/genética , Interferones/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Persona de Mediana Edad , Estrés Oxidativo , Transcriptoma , Adulto Joven
4.
Clin Diabetes ; 39(2): 160-166, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33986569

RESUMEN

To the best of our knowledge, there are no published data on the historical and recent use of CGM in clinical trials of pharmacological agents used in the treatment of diabetes. We analyzed 2,032 clinical trials of 40 antihyperglycemic therapies currently on the market with a study start date between 1 January 2000 and 31 December 2019. According to ClinicalTrials.gov, 119 (5.9%) of these trials used CGM. CGM usage in clinical trials has increased over time, rising from <5% before 2005 to 12.5% in 2019. However, it is still low given its inclusion in the American Diabetes Association's latest guidelines and known limitations of A1C for assessing ongoing diabetes care.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA