RESUMEN
Physiological double-stranded breaks (DSBs) are a major source of genomic instability. Here, we present a protocol for mapping physiological DSBs by in-suspension break labeling in situ and sequencing (sBLISS) in a single-nucleotide resolution. We describe steps for cell fixation, labeling of DSBs, DNA isolation followed by in vitro transcription (IVT), reverse transcription, and library preparation. sBLISS provides a map of DSBs over the genome and can be used to study the role of different factors in DSB formation. For complete details on the use and execution of this protocol, please refer to Hidmi et al.1.
Asunto(s)
Roturas del ADN de Doble Cadena , Humanos , Análisis de Secuencia de ADN/métodos , ADN/genética , Inestabilidad Genómica/genéticaRESUMEN
Breast cancer is the leading cause of cancer-related deaths in women worldwide, with the basal-like or triple-negative breast cancer (TNBC) subtype being particularly aggressive and challenging to treat. Understanding the molecular mechanisms driving the development and progression of TNBC is essential. We previously showed that WW domain-containing oxidoreductase (WWOX) is commonly inactivated in TNBC and is implicated in the DNA damage response (DDR) through ATM and ATR activation. In this study, we investigated the interplay between WWOX and BRCA1, both frequently inactivated in TNBC, on mammary tumor development and on DNA double-strand break (DSB) repair choice. We generated and characterized a transgenic mouse model (K14-Cre;Brca1fl/fl;Wwoxfl/fl) and observed that mice lacking both WWOX and BRCA1 developed basal-like mammary tumors and exhibited a decrease in 53BP1 foci and an increase in RAD51 foci, suggesting impaired DSB repair. We examined human TNBC cell lines harboring wild-type and mutant BRCA1 and found that WWOX expression promoted NHEJ repair in cells with wild-type BRCA1. Our findings suggest that WWOX and BRCA1 play an important role in DSB repair pathway choice in mammary epithelial cells, underscoring their functional interaction and significance in breast carcinogenesis.
RESUMEN
DNA double-stranded breaks (DSBs) pose a significant threat to genomic integrity, and their generation during essential cellular processes like transcription remains poorly understood. In this study, we employ several techniques to map DSBs, R-loops, and topoisomerase 1 cleavage complex (TOP1cc) to comprehensively investigate the interplay between transcription, DSBs, topoisomerase 1 (TOP1), and R-loops. Our findings reveal the presence of DSBs at highly expressed genes enriched with TOP1 and R-loops. Remarkably, transcription-associated DSBs at these loci are significantly reduced upon depletion of R-loops and TOP1, uncovering the pivotal roles of TOP1 and R-loops in transcriptional DSB formation. By elucidating the intricate interplay between TOP1cc trapping, R-loops, and DSBs, our study provides insights into the mechanisms underlying transcription-associated genomic instability. Moreover, we establish a link between transcriptional DSBs and early molecular changes driving cancer development, highlighting the distinct etiology and molecular characteristics of driver mutations compared to passenger mutations.
RESUMEN
Osteosarcoma is an aggressive bone tumor that primarily affects children and adolescents. This malignancy is highly aggressive, associated with poor clinical outcomes, and primarily metastasizes to the lungs. Due to its rarity and biological heterogeneity, limited studies on its molecular basis exist, hindering the development of effective therapies. The WW domain-containing oxidoreductase (WWOX) is frequently altered in human osteosarcoma. Combined deletion of Wwox and Trp53 using Osterix1-Cre transgenic mice has been shown to accelerate osteosarcoma development. In this study, we generated a traceable osteosarcoma mouse model harboring the deletion of Trp53 alone (single-knockout) or combined deletion of Wwox/Trp53 (double-knockout) and expressing a tdTomato reporter. By tracking Tomato expression at different time points, we detected the early presence of tdTomato-positive cells in the bone marrow mesenchymal stem cells of non-osteosarcoma-bearing mice (young BM). We found that double-knockout young BM cells, but not single-knockout young BM cells, exhibited tumorigenic traits both in vitro and in vivo. Molecular and cellular characterization of these double-knockout young BM cells revealed their resemblance to osteosarcoma tumor cells. Interestingly, one of the observed significant transcriptomic changes in double-knockout young BM cells was the upregulation of Myc and its target genes compared to single-knockout young BM cells. Intriguingly, Myc-chromatin immunoprecipitation sequencing revealed its increased enrichment on Myc targets, which were upregulated in double-knockout young BM cells. Restoration of WWOX in double-knockout young BM cells reduced Myc protein levels. As a prototype target, we demonstrated the upregulation of MCM7, a known Myc target, in double-knockout young BM relative to single-knockout young BM cells. Inhibition of MCM7 expression using simvastatin resulted in reduced proliferation and tumor cell growth of double-knockout young BM cells. Our findings reveal BM mesenchymal stem cells as a platform to study osteosarcoma and Myc and its targets as WWOX effectors and early molecular events during osteosarcomagenesis.
Asunto(s)
Neoplasias Óseas , Osteosarcoma , Proteínas Proto-Oncogénicas c-myc , Oxidorreductasa que Contiene Dominios WW , Animales , Humanos , Ratones , Neoplasias Óseas/genética , Osteosarcoma/genética , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba/genética , Oxidorreductasa que Contiene Dominios WW/genética , Oxidorreductasa que Contiene Dominios WW/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismoRESUMEN
Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.
Asunto(s)
Apoptosis , Caspasas , Animales , Humanos , Apoptosis/genética , Muerte Celular , Caspasas/genética , Caspasas/metabolismo , Carcinogénesis , Mamíferos/metabolismoRESUMEN
Pancreatic cancer is one of the most lethal cancers, owing to its late diagnosis and resistance to chemotherapy. The tumor suppressor WW domain-containing oxidoreductase (WWOX), one of the most active fragile sites in the human genome (FRA16D), is commonly altered in pancreatic cancer. However, the direct contribution of WWOX loss to pancreatic cancer development and progression remains largely unknown. Here, we report that combined conditional deletion of Wwox and activation of KRasG12D in Ptf1a-CreER-expressing mice results in accelerated formation of precursor lesions and pancreatic carcinoma. At the molecular level, we found that WWOX physically interacts with SMAD3 and BMP2, which are known activators of the TGF-ß signaling pathway. In the absence of WWOX, TGFß/BMPs signaling was enhanced, leading to increased macrophage infiltration and enhanced cancer stemness. Finally, overexpression of WWOX in patient-derived xenografts led to diminished aggressiveness both in vitro and in vivo. Overall, our findings reveal an essential role of WWOX in pancreatic cancer development and progression and underscore its role as a bona fide tumor suppressor.
Asunto(s)
Genes Supresores de Tumor , Neoplasias Pancreáticas , Oxidorreductasa que Contiene Dominios WW , Animales , Humanos , Ratones , Proteína Morfogenética Ósea 2/genética , Neoplasias Pancreáticas/genética , Factor de Crecimiento Transformador beta/genética , Proteínas Supresoras de Tumor/genética , Oxidorreductasa que Contiene Dominios WW/genética , Neoplasias PancreáticasRESUMEN
Anticancer therapies have been limited by the emergence of mutations and other adaptations. In bacteria, antibiotics activate the SOS response, which mobilizes error-prone factors that allow for continuous replication at the cost of mutagenesis. We investigated whether the treatment of lung cancer with EGFR inhibitors (EGFRi) similarly engages hypermutators. In cycling drug-tolerant persister (DTP) cells and in EGFRi-treated patients presenting residual disease, we observed upregulation of GAS6, whereas ablation of GAS6's receptor, AXL, eradicated resistance. Reciprocally, AXL overexpression enhanced DTP survival and accelerated the emergence of T790M, an EGFR mutation typical to resistant cells. Mechanistically, AXL induces low-fidelity DNA polymerases and activates their organizer, RAD18, by promoting neddylation. Metabolomics uncovered another hypermutator, AXL-driven activation of MYC, and increased purine synthesis that is unbalanced by pyrimidines. Aligning anti-AXL combination treatments with the transition from DTPs to resistant cells cured patient-derived xenografts. Hence, similar to bacteria, tumors tolerate therapy by engaging pharmacologically targetable endogenous mutators. SIGNIFICANCE: EGFR-mutant lung cancers treated with kinase inhibitors often evolve resistance due to secondary mutations. We report that in similarity to the bacterial SOS response stimulated by antibiotics, endogenous mutators are activated in drug-treated cells, and this heralds tolerance. Blocking the process prevented resistance in xenograft models, which offers new treatment strategies. This article is highlighted in the In This Issue feature, p. 2483.
Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Humanos , Línea Celular Tumoral , Replicación del ADN , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Tirosina Quinasa del Receptor AxlRESUMEN
The WW domain-containing oxidoreductase (WWOX) gene was originally discovered as a putative tumor suppressor spanning the common fragile site FRA16D, but as time has progressed the extent of its pleiotropic function has become apparent. At present, WWOX is a major source of interest in the context of neurological disorders, and more specifically developmental and epileptic encephalopathies (DEEs). This review article aims to introduce the many model systems used through the years to study its function and roles in neuropathies. Similarities and fundamental differences between rodent and human models are discussed. Finally, future perspectives and promising research avenues are suggested.
Asunto(s)
Trastornos del Neurodesarrollo/metabolismo , Oxidorreductasa que Contiene Dominios WW/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Humanos , Mutación con Pérdida de Función/genética , Investigación Biomédica TraslacionalRESUMEN
WW domain-containing oxidoreductase (WWOX) is an emerging neural gene-regulating homeostasis of the central nervous system. Germline biallelic mutations in WWOX cause WWOX-related epileptic encephalopathy (WOREE) syndrome and spinocerebellar ataxia and autosomal recessive 12 (SCAR12), two devastating neurodevelopmental disorders with highly heterogenous clinical outcomes, the most common being severe epileptic encephalopathy and profound global developmental delay. We recently demonstrated that neuronal ablation of murine Wwox recapitulates phenotypes of Wwox-null mice leading to intractable epilepsy, hypomyelination, and postnatal lethality. Here, we designed and produced an adeno-associated viral vector (AAV9) harboring murine Wwox or human WWOX cDNA and driven by the human neuronal Synapsin I promoter (AAV-SynI-WWOX). Testing the efficacy of AAV-SynI-WWOX delivery in Wwox-null mice demonstrated that specific neuronal restoration of WWOX expression rescued brain hyperexcitability and seizures, hypoglycemia, myelination deficits, and the premature lethality and behavioral deficits of Wwox-null mice. These findings provide a proof-of-concept for WWOX gene therapy as a promising approach to curing children with WOREE and SCAR12.
Asunto(s)
Encefalopatías , Animales , Encéfalo , Terapia Genética , Ratones , Neuronas , Fenotipo , Oxidorreductasa que Contiene Dominios WW/genéticaRESUMEN
RNA-binding proteins regulate mRNA processing and translation and are often aberrantly expressed in cancer. The RNA-binding motif protein 6, RBM6, is a known alternative splicing factor that harbors tumor suppressor activity and is frequently mutated in human cancer. Here, we identify RBM6 as a novel regulator of homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Mechanistically, we show that RBM6 regulates alternative splicing-coupled nonstop-decay of a positive HR regulator, Fe65/APBB1. RBM6 knockdown leads to a severe reduction in Fe65 protein levels and consequently impairs HR of DSBs. Accordingly, RBM6-deficient cancer cells are vulnerable to ATM and PARP inhibition and show remarkable sensitivity to cisplatin. Concordantly, cisplatin administration inhibits the growth of breast tumor devoid of RBM6 in mouse xenograft model. Furthermore, we observe that RBM6 protein is significantly lost in metastatic breast tumors compared with primary tumors, thus suggesting RBM6 as a potential therapeutic target of advanced breast cancer. Collectively, our results elucidate the link between the multifaceted roles of RBM6 in regulating alternative splicing and HR of DSBs that may contribute to tumorigenesis, and pave the way for new avenues of therapy for RBM6-deficient tumors.
Asunto(s)
Roturas del ADN de Doble Cadena , Resistencia a Antineoplásicos , Recombinación Homóloga , Proteínas de Unión al ARN/metabolismo , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/toxicidad , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Cisplatino/uso terapéutico , Cisplatino/toxicidad , Femenino , Células HCT116 , Humanos , Células MCF-7 , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Ratones , Ratones SCID , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Estabilidad del ARN , Proteínas de Unión al ARN/genética , Neoplasias de la Mama Triple Negativas/metabolismoRESUMEN
Loss of function mutations of the WW domain-containing oxidoreductase (WWOX) gene are associated with severe and fatal drug-resistant pediatric epileptic encephalopathy. Epileptic seizures are typically characterized by neuronal hyperexcitability; however, the specific contribution of WWOX to that hyperexcitability has yet to be investigated. Using a mouse model of neuronal Wwox-deletion that exhibit spontaneous seizures, in vitro whole-cell and field potential electrophysiological characterization identified spontaneous bursting activity in the neocortex, a marker of the underlying network hyperexcitability. Spectral analysis of the neocortical bursting events highlighted increased phase-amplitude coupling, and a propagation from layer II/III to layer V. These bursts were NMDAR and gap junction dependent. In layer II/III pyramidal neurons, Wwox knockout mice demonstrated elevated amplitude of excitatory post-synaptic currents, whereas the frequency and amplitude of inhibitory post-synaptic currents were reduced, as compared to heterozygote and wild-type littermate controls. Furthermore, these neurons were depolarized and demonstrated increased action potential frequency, sag current, and post-inhibitory rebound. These findings suggest WWOX plays an essential role in balancing neocortical excitability and provide insight towards developing therapeutics for those suffering from WWOX disorders.
Asunto(s)
Potenciales de Acción/fisiología , Epilepsia/fisiopatología , Neocórtex/fisiopatología , Células Piramidales/fisiología , Oxidorreductasa que Contiene Dominios WW/genética , Animales , Epilepsia/genética , Ratones , Ratones NoqueadosRESUMEN
Organoids are a powerful tool in the quest to understand human diseases. As the developing brain is extremely inaccessible in mammals, cerebral organoids (COs) provide a unique way to investigate neural development and related disorders. The aim of this study was to utilize hyperpolarized 13C NMR to investigate the metabolism of COs in real-time, in a non-destructive manner. The enzymatic activity of lactate dehydrogenase (LDH) was determined by quantifying the rate of [1-13C]lactate production from hyperpolarized [1-13C]pyruvate. Organoid development was assessed by immunofluorescence imaging. Organoid viability was confirmed using 31P NMR spectroscopy. A total of 15 organoids collated into 3 groups with a group total weight of 20-77 mg were used in this study. Two groups were at the age of 10 weeks and one was at the age of 33 weeks. The feasibility of this approach was demonstrated in both age groups, and the LDH activity rate was found to be 1.32 ± 0.75 nmol/s (n = 3 organoid batches). These results suggest that hyperpolarized NMR can be used to characterize the metabolism of brain organoids with a total tissue wet weight of as low as 20 mg (<3 mm3) and a diameter ranging from 3 to 6 mm.
RESUMEN
Developmental and epileptic encephalopathies (DEE) are a group of disorders associated with intractable seizures, brain development, and functional abnormalities, and in some cases, premature death. Pathogenic human germline biallelic mutations in tumor suppressor WW domain-containing oxidoreductase (WWOX) are associated with a relatively mild autosomal recessive spinocerebellar ataxia-12 (SCAR12) and a more severe early infantile WWOX-related epileptic encephalopathy (WOREE). In this study, we generated an in vitro model for DEEs, using the devastating WOREE syndrome as a prototype, by establishing brain organoids from CRISPR-engineered human ES cells and from patient-derived iPSCs. Using these models, we discovered dramatic cellular and molecular CNS abnormalities, including neural population changes, cortical differentiation malfunctions, and Wnt pathway and DNA damage response impairment. Furthermore, we provide a proof of concept that ectopic WWOX expression could potentially rescue these phenotypes. Our findings underscore the utility of modeling childhood epileptic encephalopathies using brain organoids and their use as a unique platform to test possible therapeutic intervention strategies.
Asunto(s)
Encefalopatías , Espasmos Infantiles , Encéfalo , Niño , Humanos , Mutación , OrganoidesRESUMEN
The transcriptional regulator WW domain-containing oxidoreductase (WWOX) is a key player in a number of cellular and biological processes including tumor suppression. Recent evidence has emerged associating WWOX with non-cancer disorders. Patients harboring pathogenic germline bi-allelic WWOX variants have been described with the rare devastating neurological syndromes autosomal recessive spinocerebellar ataxia 12 (SCAR12) (6 patients) and WWOX-related epileptic encephalopathy (DEE28 or WOREE syndrome) (56 patients). Individuals with these syndromes present with a highly heterogenous clinical spectrum, the most common clinical symptoms being severe epileptic encephalopathy and profound global developmental delay. Knowledge of the underlying pathophysiology of these syndromes, the range of variants of the WWOX gene and its genotype-phenotype correlations is limited, hampering therapeutic efforts. Therefore, there is a critical need to identify and consolidate all the reported variants in WWOX to distinguish between disease-causing alleles and their associated severity, and benign variants, with the aim of improving diagnosis and increasing therapeutic efforts. Here, we provide a comprehensive review of the literature on WWOX, and analyze the pathogenic variants from published and unpublished reports by collecting entries from the ClinVar, DECIPHER, VarSome, and PubMed databases to generate the largest dataset of WWOX pathogenic variants. We estimate the correlation between variant type and patient phenotype, and delineate the impact of each variant, and used GnomAD to cross reference these variants found in the general population. From these searches, we generated the largest published cohort of WWOX individuals. We conclude with a discussion on potential personalized medicine approaches to tackle the devastating disorders associated with WWOX mutations.
Asunto(s)
Mutación de Línea Germinal/genética , Enfermedades del Sistema Nervioso/genética , Oxidorreductasa que Contiene Dominios WW/genética , Epilepsia/genética , Humanos , Fenotipo , Medicina de PrecisiónRESUMEN
WWOX-related epileptic encephalopathy (WOREE) syndrome caused by human germline bi-allelic mutations in WWOX is a neurodevelopmental disorder characterized by intractable epilepsy, severe developmental delay, ataxia and premature death at the age of 2-4 years. The underlying mechanisms of WWOX actions are poorly understood. In the current study, we show that specific neuronal deletion of murine Wwox produces phenotypes typical of the Wwox-null mutation leading to brain hyperexcitability, intractable epilepsy, ataxia and postnatal lethality. A significant decrease in transcript levels of genes involved in myelination was observed in mouse cortex and hippocampus. Wwox-mutant mice exhibited reduced maturation of oligodendrocytes, reduced myelinated axons and impaired axonal conductivity. Brain hyperexcitability and hypomyelination were also revealed in human brain organoids with a WWOX deletion. These findings provide cellular and molecular evidence for myelination defects and hyperexcitability in the WOREE syndrome linked to neuronal function of WWOX.
Asunto(s)
Epilepsia/genética , Eliminación de Gen , Vaina de Mielina/genética , Neuronas/fisiología , Oxidorreductasa que Contiene Dominios WW/deficiencia , Oxidorreductasa que Contiene Dominios WW/genética , Animales , Encéfalo/patología , Técnicas de Cocultivo , Epilepsia/patología , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Vaina de Mielina/patología , Neuronas/patología , Organoides , Oxidorreductasa que Contiene Dominios WW/antagonistas & inhibidoresRESUMEN
The DNA damage-responsive tumor suppressors p53 and HIPK2 are well established regulators of cell fate decision-making and regulate the cellular sensitivity to DNA-damaging drugs. Here, we identify Deleted in Azoospermia-associated protein 2 (DAZAP2), a small adaptor protein, as a novel regulator of HIPK2 and specifier of the DNA damage-induced p53 response. Knock-down or genetic deletion of DAZAP2 strongly potentiates cancer cell chemosensitivity both in cells and in vivo using a mouse tumour xenograft model. In unstressed cells, DAZAP2 stimulates HIPK2 polyubiquitination and degradation through interplay with the ubiquitin ligase SIAH1. Upon DNA damage, HIPK2 site-specifically phosphorylates DAZAP2, which terminates its HIPK2-degrading function and triggers its re-localization to the cell nucleus. Interestingly, nuclear DAZAP2 interacts with p53 and specifies target gene expression through modulating a defined subset of p53 target genes. Furthermore, our results suggest that DAZAP2 co-occupies p53 response elements to specify target gene expression. Collectively, our findings propose DAZAP2 as novel regulator of the DNA damage-induced p53 response that controls cancer cell chemosensitivity.