Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Numer Method Biomed Eng ; 34(12): e3140, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30117302

RESUMEN

In this work, we present a fully coupled fluid-electro-mechanical model of a 50th percentile human heart. The model is implemented on Alya, the BSC multi-physics parallel code, capable of running efficiently in supercomputers. Blood in the cardiac cavities is modeled by the incompressible Navier-Stokes equations and an arbitrary Lagrangian-Eulerian (ALE) scheme. Electrophysiology is modeled with a monodomain scheme and the O'Hara-Rudy cell model. Solid mechanics is modeled with a total Lagrangian formulation for discrete strains using the Holzapfel-Ogden cardiac tissue material model. The three problems are simultaneously and bidirectionally coupled through an electromechanical feedback and a fluid-structure interaction scheme. In this paper, we present the scheme in detail and propose it as a computational cardiac workbench.


Asunto(s)
Simulación por Computador , Corazón/fisiología , Modelos Cardiovasculares , Humanos
2.
Int J Numer Method Biomed Eng ; 28(1): 72-86, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25830206

RESUMEN

In this paper, a highly parallel coupled electromechanical model of the heart is presented and assessed. The parallel-coupled model is thoroughly discussed, with scalability proven up to hundreds of cores. This work focuses on the mechanical part, including the constitutive model (proposing some modifications to pre-existent models), the numerical scheme and the coupling strategy. The model is next assessed through two examples. First, the simulation of a small piece of cardiac tissue is used to introduce the main features of the coupled model and calibrate its parameters against experimental evidence. Then, a more realistic problem is solved using those parameters, with a mesh of the Oxford ventricular rabbit model. The results of both examples demonstrate the capability of the model to run efficiently in hundreds of processors and to reproduce some basic characteristic of cardiac deformation.


Asunto(s)
Corazón/fisiología , Animales , Simulación por Computador , Análisis de Elementos Finitos , Cardiopatías/fisiopatología , Fenómenos Mecánicos , Modelos Anatómicos , Modelos Cardiovasculares , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA