Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36772397

RESUMEN

The use of models capable of forecasting the production of photovoltaic (PV) energy is essential to guarantee the best possible integration of this energy source into traditional distribution grids. Long Short-Term Memory networks (LSTMs) are commonly used for this purpose, but their use may not be the better option due to their great computational complexity and slower inference and training time. Thus, in this work, we seek to evaluate the use of neural networks MLPs (Multilayer Perceptron), Recurrent Neural Networks (RNNs), and LSTMs, for the forecast of 5 min of photovoltaic energy production. Each iteration of the predictions uses the last 120 min of data collected from the PV system (power, irradiation, and PV cell temperature), measured from 2019 to mid-2022 in Maceió (Brazil). In addition, Bayesian hyperparameters optimization was used to obtain the best of each model and compare them on an equal footing. Results showed that the MLP performs satisfactorily, requiring much less time to train and forecast, indicating that they can be a better option when dealing with a very short-term forecast in specific contexts, for example, in systems with little computational resources.

2.
Sensors (Basel) ; 21(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068743

RESUMEN

Monitoring and data acquisition are essential to recognize the renewable resources available on-site, evaluate electrical conversion efficiency, detect failures, and optimize electrical production. Commercial monitoring systems for the photovoltaic system are generally expensive and closed for modifications. This work proposes a low-cost real-time internet of things system for micro and mini photovoltaic generation systems that can monitor continuous voltage, continuous current, alternating power, and seven meteorological variables. The proposed system measures all relevant meteorological variables and directly acquires photovoltaic generation data from the plant (not from the inverter). The system is implemented using open software, connects to the internet without cables, stores data locally and in the cloud, and uses the network time protocol to synchronize the devices' clocks. To the best of our knowledge, no work reported in the literature presents these features altogether. Furthermore, experiments carried out with the proposed system showed good effectiveness and reliability. This system enables fog and cloud computing in a photovoltaic system, creating a time series measurements data set, enabling the future use of machine learning to create smart photovoltaic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA