Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
3.
Carbon Balance Manag ; 18(1): 22, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37982938

RESUMEN

BACKGROUND: The application of different approaches calculating the anthropogenic carbon net flux from land, leads to estimates that vary considerably. One reason for these variations is the extent to which approaches consider forest land to be "managed" by humans, and thus contributing to the net anthropogenic flux. Global Earth Observation (EO) datasets characterising spatio-temporal changes in land cover and carbon stocks provide an independent and consistent approach to estimate forest carbon fluxes. These can be compared against results reported in National Greenhouse Gas Inventories (NGHGIs) to support accurate and timely measuring, reporting and verification (MRV). Using Brazil as a primary case study, with additional analysis in Indonesia and Malaysia, we compare a Global EO-based dataset of forest carbon fluxes to results reported in NGHGIs. RESULTS: Between 2001 and 2020, the EO-derived estimates of all forest-related emissions and removals indicate that Brazil was a net sink of carbon (- 0.2 GtCO2yr-1), while Brazil's NGHGI reported a net carbon source (+ 0.8 GtCO2yr-1). After adjusting the EO estimate to use the Brazilian NGHGI definition of managed forest and other assumptions used in the inventory's methodology, the EO net flux became a source of + 0.6 GtCO2yr-1, comparable to the NGHGI. Remaining discrepancies are due largely to differing carbon removal factors and forest types applied in the two datasets. In Indonesia, the EO and NGHGI net flux estimates were similar (+ 0.6 GtCO2 yr-1), but in Malaysia, they differed in both magnitude and sign (NGHGI: -0.2 GtCO2 yr-1; Global EO: + 0.2 GtCO2 yr-1). Spatially explicit datasets on forest types were not publicly available for analysis from either NGHGI, limiting the possibility of detailed adjustments. CONCLUSIONS: By adjusting the EO dataset to improve comparability with carbon fluxes estimated for managed forests in the Brazilian NGHGI, initially diverging estimates were largely reconciled and remaining differences can be explained. Despite limited spatial data available for Indonesia and Malaysia, our comparison indicated specific aspects where differing approaches may explain divergence, including uncertainties and inaccuracies. Our study highlights the importance of enhanced transparency, as set out by the Paris Agreement, to enable alignment between different approaches for independent measuring and verification.

4.
Nature ; 621(7978): 318-323, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612502

RESUMEN

The Amazon forest carbon sink is declining, mainly as a result of land-use and climate change1-4. Here we investigate how changes in law enforcement of environmental protection policies may have affected the Amazonian carbon balance between 2010 and 2018 compared with 2019 and 2020, based on atmospheric CO2 vertical profiles5,6, deforestation7 and fire data8, as well as infraction notices related to illegal deforestation9. We estimate that Amazonia carbon emissions increased from a mean of 0.24 ± 0.08 PgC year-1 in 2010-2018 to 0.44 ± 0.10 PgC year-1 in 2019 and 0.52 ± 0.10 PgC year-1 in 2020 (± uncertainty). The observed increases in deforestation were 82% and 77% (94% accuracy) and burned area were 14% and 42% in 2019 and 2020 compared with the 2010-2018 mean, respectively. We find that the numbers of notifications of infractions against flora decreased by 30% and 54% and fines paid by 74% and 89% in 2019 and 2020, respectively. Carbon losses during 2019-2020 were comparable with those of the record warm El Niño (2015-2016) without an extreme drought event. Statistical tests show that the observed differences between the 2010-2018 mean and 2019-2020 are unlikely to have arisen by chance. The changes in the carbon budget of Amazonia during 2019-2020 were mainly because of western Amazonia becoming a carbon source. Our results indicate that a decline in law enforcement led to increases in deforestation, biomass burning and forest degradation, which increased carbon emissions and enhanced drying and warming of the Amazon forests.


Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Conservación de los Recursos Naturales , Política Ambiental , Aplicación de la Ley , Bosque Lluvioso , Biomasa , Brasil , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Política Ambiental/legislación & jurisprudencia , Atmósfera/química , Incendios Forestales/estadística & datos numéricos , Conservación de los Recursos Naturales/estadística & datos numéricos , El Niño Oscilación del Sur , Sequías/estadística & datos numéricos
5.
Sci Rep ; 13(1): 5851, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037850

RESUMEN

Studies showed that Brazilian Amazon indigenous territories (ITs) are efficient models for preserving forests by reducing deforestation, fires, and related carbon emissions. Considering the importance of ITs for conserving socio-environmental and cultural diversity and the recent climb in the Brazilian Amazon deforestation, we used official remote sensing datasets to analyze deforestation inside and outside indigenous territories within Brazil's Amazon biome during the 2013-2021 period. Deforestation has increased by 129% inside ITs since 2013, followed by an increase in illegal mining areas. In 2019-2021, deforestation was 195% higher and 30% farther from the borders towards the interior of indigenous territories than in previous years (2013-2018). Furthermore, about 59% of carbon dioxide (CO2) emissions within ITs in 2013-2021 (96 million tons) occurred in the last three years of analyzed years, revealing the magnitude of increasing deforestation to climate impacts. Therefore, curbing deforestation in indigenous territories must be a priority for the Brazilian government to secure these peoples' land rights, ensure the forests' protection and regulate the global climate.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Brasil , Ecosistema , Clima
6.
Glob Chang Biol ; 29(11): 3098-3113, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36883779

RESUMEN

Fragmented tropical forest landscapes preserve much of the remaining biodiversity and carbon stocks. Climate change is expected to intensify droughts and increase fire hazard and fire intensities, thereby causing habitat deterioration, and losses of biodiversity and carbon stock losses. Understanding the trajectories that these landscapes may follow under increased climate pressure is imperative for establishing strategies for conservation of biodiversity and ecosystem services. Here, we used a quantitative predictive modelling approach to project the spatial distribution of the aboveground biomass density (AGB) by the end of the 21st century across the Brazilian Atlantic Forest (AF) domain. To develop the models, we used the maximum entropy method with projected climate data to 2100, based on the Intergovernmental Panel on Climate Change Representative Concentration Pathway (RCP) 4.5 from the fifth Assessment Report. Our AGB models had a satisfactory performance (area under the curve > 0.75 and p value < .05). The models projected a significant increase of 8.5% in the total carbon stock. Overall, the projections indicated that 76.9% of the AF domain would have suitable climatic conditions for increasing biomass by 2100 considering the RCP 4.5 scenario, in the absence of deforestation. Of the existing forest fragments, 34.7% are projected to increase their AGB, while 2.6% are projected to have their AGB reduced by 2100. The regions likely to lose most AGB-up to 40% compared to the baseline-are found between latitudes 13° and 20° south. Overall, although climate change effects on AGB vary latitudinally for the 2071-2100 period under the RCP 4.5 scenario, our model indicates that AGB stocks can potentially increase across a large fraction of the AF. The patterns found here are recommended to be taken into consideration during the planning of restoration efforts, as part of climate change mitigation strategies in the AF and elsewhere in Brazil.


Asunto(s)
Ecosistema , Árboles , Biomasa , Brasil , Cambio Climático , Bosques , Carbono , Clima Tropical
7.
Nature ; 615(7952): 436-442, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922608

RESUMEN

The globally important carbon sink of intact, old-growth tropical humid forests is declining because of climate change, deforestation and degradation from fire and logging1-3. Recovering tropical secondary and degraded forests now cover about 10% of the tropical forest area4, but how much carbon they accumulate remains uncertain. Here we quantify the aboveground carbon (AGC) sink of recovering forests across three main continuous tropical humid regions: the Amazon, Borneo and Central Africa5,6. On the basis of satellite data products4,7, our analysis encompasses the heterogeneous spatial and temporal patterns of growth in degraded and secondary forests, influenced by key environmental and anthropogenic drivers. In the first 20 years of recovery, regrowth rates in Borneo were up to 45% and 58% higher than in Central Africa and the Amazon, respectively. This is due to variables such as temperature, water deficit and disturbance regimes. We find that regrowing degraded and secondary forests accumulated 107 Tg C year-1 (90-130 Tg C year-1) between 1984 and 2018, counterbalancing 26% (21-34%) of carbon emissions from humid tropical forest loss during the same period. Protecting old-growth forests is therefore a priority. Furthermore, we estimate that conserving recovering degraded and secondary forests can have a feasible future carbon sink potential of 53 Tg C year-1 (44-62 Tg C year-1) across the main tropical regions studied.


Asunto(s)
Secuestro de Carbono , Carbono , Conservación de los Recursos Naturales , Bosques , Humedad , Árboles , Clima Tropical , Carbono/metabolismo , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Árboles/metabolismo , Agricultura Forestal/estadística & datos numéricos , Imágenes Satelitales , Temperatura , Bosque Lluvioso , Borneo , África Central , Brasil
8.
Science ; 379(6630): eabp8622, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36701452

RESUMEN

Approximately 2.5 × 106 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year-1), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year-1). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest.


Asunto(s)
Carbono , Conservación de los Recursos Naturales , Bosque Lluvioso , Biodiversidad , Ciclo del Carbono , Brasil
9.
Glob Chang Biol ; 29(4): 1106-1118, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36415966

RESUMEN

In the Amazon, deforestation and climate change lead to increased vulnerability to forest degradation, threatening its existing carbon stocks and its capacity as a carbon sink. We use satellite L-Band Vegetation Optical Depth (L-VOD) data that provide an integrated (top-down) estimate of biomass carbon to track changes over 2011-2019. Because the spatial resolution of L-VOD is coarse (0.25°), it allows limited attribution of the observed changes. We therefore combined high-resolution annual maps of forest cover and disturbances with biomass maps to model carbon losses (bottom-up) from deforestation and degradation, and gains from regrowing secondary forests. We show an increase of deforestation and associated degradation losses since 2012 which greatly outweigh secondary forest gains. Degradation accounted for 40% of gross losses. After an increase in 2011, old-growth forests show a net loss of above-ground carbon between 2012 and 2019. The sum of component carbon fluxes in our model is consistent with the total biomass change from L-VOD of 1.3 Pg C over 2012-2019. Across nine Amazon countries, we found that while Brazil contains the majority of biomass stocks (64%), its losses from disturbances were disproportionately high (79% of gross losses). Our multi-source analysis provides a pessimistic assessment of the Amazon carbon balance and highlights the urgent need to stop the recent rise of deforestation and degradation, particularly in the Brazilian Amazon.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Biomasa , Secuestro de Carbono , Carbono/metabolismo
11.
Carbon Balance Manag ; 17(1): 15, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36183029

RESUMEN

The Global Stocktake (GST), implemented by the Paris Agreement, requires rapid developments in the capabilities to quantify annual greenhouse gas (GHG) emissions and removals consistently from the global to the national scale and improvements to national GHG inventories. In particular, new capabilities are needed for accurate attribution of sources and sinks and their trends to natural and anthropogenic processes. On the one hand, this is still a major challenge as national GHG inventories follow globally harmonized methodologies based on the guidelines established by the Intergovernmental Panel on Climate Change, but these can be implemented differently for individual countries. Moreover, in many countries the capability to systematically produce detailed and annually updated GHG inventories is still lacking. On the other hand, spatially-explicit datasets quantifying sources and sinks of carbon dioxide, methane and nitrous oxide emissions from Earth Observations (EO) are still limited by many sources of uncertainty. While national GHG inventories follow diverse methodologies depending on the availability of activity data in the different countries, the proposed comparison with EO-based estimates can help improve our understanding of the comparability of the estimates published by the different countries. Indeed, EO networks and satellite platforms have seen a massive expansion in the past decade, now covering a wide range of essential climate variables and offering high potential to improve the quantification of global and regional GHG budgets and advance process understanding. Yet, there is no EO data that quantifies greenhouse gas fluxes directly, rather there are observations of variables or proxies that can be transformed into fluxes using models. Here, we report results and lessons from the ESA-CCI RECCAP2 project, whose goal was to engage with National Inventory Agencies to improve understanding about the methods used by each community to estimate sources and sinks of GHGs and to evaluate the potential for satellite and in-situ EO to improve national GHG estimates. Based on this dialogue and recent studies, we discuss the potential of EO approaches to provide estimates of GHG budgets that can be compared with those of national GHG inventories. We outline a roadmap for implementation of an EO carbon-monitoring program that can contribute to the Paris Agreement.

12.
Nature ; 608(7923): 558-562, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948632

RESUMEN

The productivity of rainforests growing on highly weathered tropical soils is expected to be limited by phosphorus availability1. Yet, controlled fertilization experiments have been unable to demonstrate a dominant role for phosphorus in controlling tropical forest net primary productivity. Recent syntheses have demonstrated that responses to nitrogen addition are as large as to phosphorus2, and adaptations to low phosphorus availability appear to enable net primary productivity to be maintained across major soil phosphorus gradients3. Thus, the extent to which phosphorus availability limits tropical forest productivity is highly uncertain. The majority of the Amazonia, however, is characterized by soils that are more depleted in phosphorus than those in which most tropical fertilization experiments have taken place2. Thus, we established a phosphorus, nitrogen and base cation addition experiment in an old growth Amazon rainforest, with a low soil phosphorus content that is representative of approximately 60% of the Amazon basin. Here we show that net primary productivity increased exclusively with phosphorus addition. After 2 years, strong responses were observed in fine root (+29%) and canopy productivity (+19%), but not stem growth. The direct evidence of phosphorus limitation of net primary productivity suggests that phosphorus availability may restrict Amazon forest responses to CO2 fertilization4, with major implications for future carbon sequestration and forest resilience to climate change.


Asunto(s)
Cambio Climático , Fósforo , Bosque Lluvioso , Suelo , Árboles , Clima Tropical , Aclimatación , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Secuestro de Carbono , Cationes/metabolismo , Cationes/farmacología , Cambio Climático/estadística & datos numéricos , Modelos Biológicos , Nitrógeno/metabolismo , Nitrógeno/farmacología , Fósforo/metabolismo , Fósforo/farmacología , Suelo/química , Árboles/efectos de los fármacos , Árboles/metabolismo , Incertidumbre
13.
Proc Natl Acad Sci U S A ; 119(27): e2202310119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759674

RESUMEN

Human activities pose a major threat to tropical forest biodiversity and ecosystem services. Although the impacts of deforestation are well studied, multiple land-use and land-cover transitions (LULCTs) occur in tropical landscapes, and we do not know how LULCTs differ in their rates or impacts on key ecosystem components. Here, we quantified the impacts of 18 LULCTs on three ecosystem components (biodiversity, carbon, and soil), based on 18 variables collected from 310 sites in the Brazilian Amazon. Across all LULCTs, biodiversity was the most affected ecosystem component, followed by carbon stocks, but the magnitude of change differed widely among LULCTs and individual variables. Forest clearance for pasture was the most prevalent and high-impact transition, but we also identified other LULCTs with high impact but lower prevalence (e.g., forest to agriculture). Our study demonstrates the importance of considering multiple ecosystem components and LULCTs to understand the consequences of human activities in tropical landscapes.


Asunto(s)
Efectos Antropogénicos , Biodiversidad , Conservación de los Recursos Naturales , Bosque Lluvioso , Agricultura , Brasil , Carbono , Humanos
14.
Nature ; 595(7867): 388-393, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34262208

RESUMEN

Amazonia hosts the Earth's largest tropical forests and has been shown to be an important carbon sink over recent decades1-3. This carbon sink seems to be in decline, however, as a result of factors such as deforestation and climate change1-3. Here we investigate Amazonia's carbon budget and the main drivers responsible for its change into a carbon source. We performed 590 aircraft vertical profiling measurements of lower-tropospheric concentrations of carbon dioxide and carbon monoxide at four sites in Amazonia from 2010 to 20184. We find that total carbon emissions are greater in eastern Amazonia than in the western part, mostly as a result of spatial differences in carbon-monoxide-derived fire emissions. Southeastern Amazonia, in particular, acts as a net carbon source (total carbon flux minus fire emissions) to the atmosphere. Over the past 40 years, eastern Amazonia has been subjected to more deforestation, warming and moisture stress than the western part, especially during the dry season, with the southeast experiencing the strongest trends5-9. We explore the effect of climate change and deforestation trends on carbon emissions at our study sites, and find that the intensification of the dry season and an increase in deforestation seem to promote ecosystem stress, increase in fire occurrence, and higher carbon emissions in the eastern Amazon. This is in line with recent studies that indicate an increase in tree mortality and a reduction in photosynthesis as a result of climatic changes across Amazonia1,10.


Asunto(s)
Ciclo del Carbono , Secuestro de Carbono , Cambio Climático/estadística & datos numéricos , Conservación de los Recursos Naturales/estadística & datos numéricos , Bosques , Atmósfera/química , Dióxido de Carbono/análisis , Monóxido de Carbono/análisis , Actividades Humanas , Fotosíntesis , Lluvia , Estaciones del Año , Temperatura
15.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34282005

RESUMEN

With humanity facing an unprecedented climate crisis, the conservation of tropical forests has never been so important - their vast terrestrial carbon stocks can be turned into emissions by climatic and human disturbances. However, the duration of these effects is poorly understood, and it is unclear whether impacts are amplified in forests with a history of previous human disturbance. Here, we focus on the Amazonian epicenter of the 2015-16 El Niño, a region that encompasses 1.2% of the Brazilian Amazon. We quantify, at high temporal resolution, the impacts of an extreme El Niño (EN) drought and extensive forest fires on plant mortality and carbon loss in undisturbed and human-modified forests. Mortality remained higher than pre-El Niño levels for 36 mo in EN-drought-affected forests and for 30 mo in EN-fire-affected forests. In EN-fire-affected forests, human disturbance significantly increased plant mortality. Our investigation of the ecological and physiological predictors of tree mortality showed that trees with lower wood density, bark thickness and leaf nitrogen content, as well as those that experienced greater fire intensity, were more vulnerable. Across the region, the 2015-16 El Niño led to the death of an estimated 2.5 ± 0.3 billion stems, resulting in emissions of 495 ± 94 Tg CO2 Three years after the El Niño, plant growth and recruitment had offset only 37% of emissions. Our results show that limiting forest disturbance will not only help maintain carbon stocks, but will also maximize the resistance of Amazonian forests if fires do occur.


Asunto(s)
Ciclo del Carbono , Sequías , El Niño Oscilación del Sur , Agricultura Forestal/estadística & datos numéricos , Fenómenos Fisiológicos de las Plantas , Árboles/crecimiento & desarrollo , Incendios Forestales , Brasil , Bosques , Humanos
17.
Proc Biol Sci ; 288(1951): 20210094, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34004131

RESUMEN

While the climate and human-induced forest degradation is increasing in the Amazon, fire impacts on forest dynamics remain understudied in the wetter regions of the basin, which are susceptible to large wildfires only during extreme droughts. To address this gap, we installed burned and unburned plots immediately after a wildfire in the northern Purus-Madeira (Central Amazon) during the 2015 El-Niño. We measured all individuals with diameter of 10 cm or more at breast height and conducted recensuses to track the demographic drivers of biomass change over 3 years. We also assessed how stem-level growth and mortality were influenced by fire intensity (proxied by char height) and tree morphological traits (size and wood density). Overall, the burned forest lost 27.3% of stem density and 12.8% of biomass, concentrated in small and medium trees. Mortality drove these losses in the first 2 years and recruitment decreased in the third year. The fire increased growth in lower wood density and larger sized trees, while char height had transitory strong effects increasing tree mortality. Our findings suggest that fire impacts are weaker in the wetter Amazon. Here, trees of greater sizes and higher wood densities may confer a margin of fire resistance; however, this may not extend to higher intensity fires arising from climate change.


Asunto(s)
Incendios , Incendios Forestales , Sequías , Bosques , Humanos , Árboles
18.
Nat Commun ; 12(1): 1785, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741981

RESUMEN

Tropical secondary forests sequester carbon up to 20 times faster than old-growth forests. This rate does not capture spatial regrowth patterns due to environmental and disturbance drivers. Here we quantify the influence of such drivers on the rate and spatial patterns of regrowth in the Brazilian Amazon using satellite data. Carbon sequestration rates of young secondary forests (<20 years) in the west are ~60% higher (3.0 ± 1.0 Mg C ha-1 yr-1) compared to those in the east (1.3 ± 0.3 Mg C ha-1 yr-1). Disturbances reduce regrowth rates by 8-55%. The 2017 secondary forest carbon stock, of 294 Tg C, could be 8% higher by avoiding fires and repeated deforestation. Maintaining the 2017 secondary forest area has the potential to accumulate ~19.0 Tg C yr-1 until 2030, contributing ~5.5% to Brazil's 2030 net emissions reduction target. Implementing legal mechanisms to protect and expand secondary forests whilst supporting old-growth conservation is, therefore, key to realising their potential as a nature-based climate solution.


Asunto(s)
Secuestro de Carbono , Carbono/metabolismo , Cambio Climático , Bosques , Clima Tropical , Algoritmos , Biomasa , Brasil , Conservación de los Recursos Naturales/métodos , Ecosistema , Incendios , Agricultura Forestal , Geografía , Modelos Teóricos , Imágenes Satelitales/métodos , Árboles/crecimiento & desarrollo , Árboles/metabolismo
19.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33558246

RESUMEN

In the Amazon rainforest, land use following deforestation is diverse and dynamic. Mounting evidence indicates that the climatic impacts of forest loss can also vary considerably, depending on specific features of the affected areas. The size of the deforested patches, for instance, was shown to modulate the characteristics of local climatic impacts. Nonetheless, the influence of different types of land use and management strategies on the magnitude of local climatic changes remains uncertain. Here, we evaluated the impacts of large-scale commodity farming and rural settlements on surface temperature, rainfall patterns, and energy fluxes. Our results reveal that changes in land-atmosphere coupling are induced not only by deforestation size but also, by land use type and management patterns inside the deforested areas. We provide evidence that, in comparison with rural settlements, deforestation caused by large-scale commodity agriculture is more likely to reduce convective rainfall and increase land surface temperature. We demonstrate that these differences are mainly caused by a more intensive management of the land, resulting in significantly lower vegetation cover throughout the year, which reduces latent heat flux. Our findings indicate an urgent need for alternative agricultural practices, as well as forest restoration, for maintaining ecosystem processes and mitigating change in the local climates across the Amazon basin.


Asunto(s)
Agricultura/estadística & datos numéricos , Procesos Climáticos , Conservación de los Recursos Naturales/estadística & datos numéricos , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...