RESUMEN
The dual ß-lactam approach has been successfully applied to overcome target redundancy in nontuberculous mycobacteria. Surprisingly, this approach has not been leveraged for Mycobacterium tuberculosis, despite the high conservation of peptidoglycan synthesis. Through a comprehensive screen of oral ß-lactam pairs, we have discovered that cefuroxime strongly potentiates the bactericidal activity of tebipenem and sulopenem-advanced clinical candidates-and amoxicillin, at concentrations achieved clinically. ß-lactam pairs thus have the potential to reduce TB treatment duration.
RESUMEN
The Mycobacterium abscessus drug development pipeline is poorly populated, with particularly few validated target-lead couples to initiate de novo drug discovery. Trimethoprim, an inhibitor of dihydrofolate reductase (DHFR) used for the treatment of a range of bacterial infections, is not active against M. abscessus. Thus, evidence that M. abscessus DHFR is vulnerable to pharmacological intervention with a small molecule inhibitor is lacking. Here, we show that the pyrrolo-quinazoline PQD-1, previously identified as a DHFR inhibitor active against Mycobacterium tuberculosis, exerts whole cell activity against M. abscessus. Enzyme inhibition studies showed that PQD-1, in contrast to trimethoprim, is a potent inhibitor of M. abscessus DHFR and over-expression of DHFR causes resistance to PQD-1, providing biochemical and genetic evidence that DHFR is a vulnerable target and mediates PQD-1's growth inhibitory activity in M. abscessus. As observed in M. tuberculosis, PQD-1 resistant mutations mapped to the folate pathway enzyme thymidylate synthase (TYMS) ThyA. Like trimethoprim in other bacteria, PQD-1 synergizes with the dihydropteroate synthase (DHPS) inhibitor sulfamethoxazole (SMX), offering an opportunity to exploit the successful dual inhibition of the folate pathway and develop similarly potent combinations against M. abscessus. PQD-1 is active against subspecies of M. abscessus and a panel of clinical isolates, providing epidemiological validation of the target-lead couple. Leveraging a series of PQD-1 analogs, we have demonstrated a dynamic structure-activity relationship (SAR). Collectively, the results identify M. abscessus DHFR as an attractive target and PQD-1 as a chemical starting point for the discovery of novel drugs and drug combinations that target the folate pathway in M. abscessus.
Asunto(s)
Antagonistas del Ácido Fólico , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Antagonistas del Ácido Fólico/farmacología , Trimetoprim/farmacología , Mycobacterium tuberculosis/metabolismo , Inhibidores Enzimáticos/farmacología , Ácido Fólico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológicoRESUMEN
Single-step selection of Mycobacterium abscessus mutants resistant to linezolid yielded high-level resistance at a low frequency that was associated with mutations in 23S rRNA or the ribosomal protein L3. Surprisingly, linezolid-resistant rRNA mutations conferred cross-resistance to several unrelated antibiotics. Low-level linezolid-resistant mutants were isolated at a higher frequency and were due to loss-of-function mutations in the transcriptional regulator MAB_4384, the repressor of the drug efflux pump MmpL5-MmpS5. IMPORTANCE The protein synthesis inhibitor linezolid is used for the treatment of lung disease caused by Mycobacterium abscessus. However, many strains of the bacterium show poor susceptibility to the antibiotic. For most clinical isolates, resistance is not due to mutations in the target of the drug, the ribosome. The mechanism responsible for non-target-related, indirect linezolid resistance is unknown. Here, we analyzed the development of linezolid resistance in the M. abscessus reference strain in vitro. We found, as expected, resistance mutations in the ribosome. In addition, we identified mutations in a system that involves a drug pump, suggesting drug efflux as a mechanism of resistance to linezolid. This finding may inform the analysis of clinical resistance to linezolid. Surprisingly, a subset of linezolid-resistant ribosome mutations conferred cross-resistance to several structurally and mechanistically unrelated drugs, uncovering a novel multidrug resistance mechanism.
Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Humanos , Linezolid/farmacología , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , MutaciónRESUMEN
Nα-2-thiophenoyl-d-phenylalanine-2-morpholinoanilide [MMV688845, Pathogen Box; Medicines for Malaria Venture; IUPAC: (2R)-N-(1-((2-morpholinophenyl)amino)-1-oxo-3-phenylpropan-2-yl)thiophene-2-carboxamide)] is a hit compound, which shows activity against Mycobacterium abscessus (MIC90 6.25-12.5 µM) and other mycobacteria. This work describes derivatization of MMV688845 by introducing a thiomorpholine moiety and the preparation of the corresponding sulfones and sulfoxides. The molecular structures of three analogs are confirmed by X-ray crystallography. Conservation of the essential R configuration during synthesis is proven by chiral HPLC for an exemplary compound. All analogs were characterized in a MIC assay against M. abscessus, Mycobacterium intracellulare, Mycobacterium smegmatis, and Mycobacterium tuberculosis. The sulfone derivatives exhibit lower MIC90 values (M. abscessus: 0.78 µM), and the sulfoxides show higher aqueous solubility than the hit compound. The most potent derivatives possess bactericidal activity (99% inactivation of M. abscessus at 12.5 µM), while they are not cytotoxic against mammalian cell lines.
Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Animales , Amidas , Antibacterianos/farmacología , Antibacterianos/química , Mamíferos , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/microbiologíaRESUMEN
New oxazolidinones are in clinical development for the treatment of tuberculosis and nontuberculous mycobacterial (NTM) infections, as a replacement for linezolid and tedizolid, which cause mitochondrial toxicity after prolonged treatment. Here, we carried out side-by-side measurements of mitochondrial protein synthesis inhibition and activity against clinically relevant mycobacterial pathogens of approved and novel oxazolidinones. We found a large range of selectivity indices suggesting TBI-223 and sutezolid as promising candidates against tuberculosis and NTM lung disease caused by Mycobacterium kansasii.
Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Oxazolidinonas , Tuberculosis , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Oxazolidinonas/farmacología , Oxazolidinonas/uso terapéutico , Linezolid/farmacología , Linezolid/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Tuberculosis/tratamiento farmacológico , Micobacterias no TuberculosasRESUMEN
Mycobacterium tuberculosis (Mtb) aspartate decarboxylase PanD is required for biosynthesis of the essential cofactor coenzyme A and targeted by the first line drug pyrazinamide (PZA). PZA is a prodrug that is converted by a bacterial amidase into its bioactive form pyrazinoic acid (POA). Employing structure-function analyses we previously identified POA-based inhibitors of Mtb PanD showing much improved inhibitory activity against the enzyme. Here, we performed the first structure-function studies on PanD encoded by the nontuberculous mycobacterial lung pathogen Mycobacterium abscessus (Mab), shedding light on the differences and similarities of Mab and Mtb PanD. Solution X-ray scattering data provided the solution structure of the entire tetrameric Mab PanD, which in comparison to the structure of the derived C-terminal truncated Mab PanD1-114 mutant revealed the orientation of the four flexible C-termini relative to the catalytic core. Enzymatic studies of Mab PanD1-114 explored the essentiality of the C-terminus for catalysis. A library of recombinant Mab PanD mutants based on structural information and PZA/POA resistant PanD mutations in Mtb illuminated critical residues involved in the substrate tunnel and enzymatic activity. Using our library of POA analogues, we identified (3-(1-naphthamido)pyrazine-2-carboxylic acid) (analogue 2) as the first potent inhibitor of Mab PanD. The inhibitor shows mainly electrostatic- and hydrogen bonding interaction with the target enzyme as explored by isothermal titration calorimetry and confirmed by docking studies. The observed unfavorable entropy indicates that significant conformational changes are involved in the binding process of analogue 2 to Mab PanD. In contrast to PZA and POA, which are whole-cell inactive, analogue 2 exerts appreciable antibacterial activity against the three subspecies of Mab.
Asunto(s)
Mycobacterium abscessus , Pirazinamida , Antituberculosos/farmacología , Carboxiliasas , Pirazinamida/análogos & derivados , Pirazinamida/farmacologíaRESUMEN
Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a potentially fatal infectious disease requiring long treatment duration with multiple antibiotics and against which there is no reliable cure. Among the factors that have hampered the development of adequate drug regimens is the lack of an animal model that reproduces the NTM lung pathology required for studying antibiotic penetration and efficacy. Given the documented similarities between tuberculosis and NTM immunopathology in patients, we first determined that the rabbit model of active tuberculosis reproduces key features of human NTM-PD and provides an acceptable surrogate model to study lesion penetration. We focused on clarithromycin, a macrolide and pillar of NTM-PD treatment, and explored the underlying causes of the disconnect between its favorable potency and pharmacokinetics and inconsistent clinical outcome. To quantify pharmacokinetic-pharmacodynamic target attainment at the site of disease, we developed a translational model describing clarithromycin distribution from plasma to lung lesions, including the spatial quantitation of clarithromycin and azithromycin in mycobacterial lesions of two patients on long-term macrolide therapy. Through clinical simulations, we visualized the coverage of clarithromycin in plasma and four disease compartments, revealing heterogeneous bacteriostatic and bactericidal target attainment depending on the compartment and the corresponding potency against nontuberculous mycobacteria in clinically relevant assays. Overall, clarithromycin's favorable tissue penetration and lack of bactericidal activity indicated that its clinical activity is limited by pharmacodynamic, rather than pharmacokinetic, factors. Our results pave the way toward the simulation of lesion pharmacokinetic-pharmacodynamic coverage by multidrug combinations to enable the prioritization of promising regimens for clinical trials.
Asunto(s)
Enfermedades Pulmonares , Infecciones por Mycobacterium no Tuberculosas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/microbiología , Macrólidos/farmacología , Macrólidos/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas , ConejosRESUMEN
The aminobenzimidazole SPR719 targets DNA gyrase in Mycobacterium tuberculosis. The molecule acts as inhibitor of the enzyme's ATPase located on the Gyrase B subunit of the tetrameric Gyrase A2B2 protein. SPR719 is also active against non-tuberculous mycobacteria (NTM) and recently entered clinical development for lung disease caused by these bacteria. Resistance against SPR719 in NTM has not been characterized. Here, we determined spontaneous in vitro resistance frequencies in single step resistance development studies, MICs of resistant strains, and resistance associated DNA sequence polymorphisms in two major NTM pathogens Mycobacterium avium and Mycobacterium abscessus. A low-frequency resistance (10-8/CFU) was associated with missense mutations in the ATPase domain of the Gyrase B subunit in both bacteria, consistent with inhibition of DNA gyrase as the mechanism of action of SPR719 against NTM. For M. abscessus, but not for M. avium, a second, high-frequency (10-6/CFU) resistance mechanism was observed. High-frequency SPR719 resistance was associated with frameshift mutations in the transcriptional repressor MAB_4384 previously shown to regulate expression of the drug efflux pump system MmpS5/MmpL5. Our results confirm DNA gyrase as target of SPR719 in NTM and reveal differential resistance development in the two NTM species, with M. abscessus displaying high-frequency indirect resistance possibly involving drug efflux. IMPORTANCE Clinical emergence of resistance to new antibiotics affects their utility. Characterization of in vitro resistance is a first step in the profiling of resistance properties of novel drug candidates. Here, we characterized in vitro resistance against SPR719, a drug candidate for the treatment of lung disease caused by non-tuberculous mycobacteria (NTM). The identified resistance associated mutations and the observed differential resistance behavior of the two characterized NTM species provide a basis for follow-up studies of resistance in vivo to further inform clinical development of SPR719.
Asunto(s)
Antibacterianos/farmacología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/efectos de los fármacos , Mycobacterium avium/efectos de los fármacos , Inhibidores de Topoisomerasa II/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bencimidazoles/farmacología , Girasa de ADN/genética , Girasa de ADN/metabolismo , Farmacorresistencia Bacteriana , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium abscessus/enzimología , Mycobacterium abscessus/genética , Mycobacterium abscessus/crecimiento & desarrollo , Mycobacterium avium/enzimología , Mycobacterium avium/genética , Mycobacterium avium/crecimiento & desarrolloRESUMEN
Cyclohexyl-griselimycin is a preclinical candidate for use against tuberculosis (TB). Here, we show that this oral cyclodepsipeptide is also active against the intrinsically drug-resistant nontuberculous mycobacterium Mycobacterium abscessus in vitro and in a mouse model of infection. This adds a novel advanced lead compound to the M. abscessus drug pipeline and supports a strategy of screening chemical matter generated in TB drug discovery efforts to fast-track the discovery of novel antibiotics against M. abscessus.
Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas , Péptidos CíclicosRESUMEN
Fluoroquinolones-the only clinically used DNA gyrase inhibitors-are effective against tuberculosis (TB) but are in limited clinical use for nontuberculous mycobacteria (NTM) lung infections due to intrinsic drug resistance. We sought to test alternative DNA gyrase inhibitors for anti-NTM activity. Mycobacterium tuberculosis gyrase inhibitors (MGIs), a subclass of novel bacterial topoisomerase inhibitors (NBTIs), were recently shown to be active against the tubercle bacillus. Here, we show that the MGI EC/11716 not only has potent anti-tubercular activity but is active against M. abscessus and M. avium in vitro. Focusing on M. abscessus, which causes the most difficult to cure NTM disease, we show that EC/11716 is bactericidal, active against drug-tolerant biofilms, and efficacious in a murine model of M. abscessus lung infection. Based on resistant mutant selection experiments, we report a low frequency of resistance to EC/11716 and confirm DNA gyrase as its target. Our findings demonstrate the potential of NBTIs as anti-M. abscessus and possibly broad-spectrum anti-mycobacterial agents.
Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Animales , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Micobacterias no Tuberculosas , Tioinosina/análogos & derivados , Inhibidores de Topoisomerasa II/farmacologíaRESUMEN
Isoniazid (INH) remains a cornerstone for treatment of drug susceptible tuberculosis (TB), yet the quantitative structure-activity relationships for INH are not well documented in the literature. In this paper, we have evaluated a systematic series of INH analogs against contemporary Mycobacterium tuberculosis strains from different lineages and a few non-tuberculous mycobacteria (NTM). Deletion of the pyridyl nitrogen atom, isomerization of the pyridine nitrogen to other positions, replacement of the pyridine ring with isosteric heterocycles, and modification of the hydrazide moiety of INH abolishes antitubercular activity. Similarly, substitution of the pyridine ring at the 3-position is not tolerated while substitution at the 2-position is permitted with 2-methyl-INH 9 displaying antimycobacterial activity comparable to INH. To assess the specific activity of this series of INH analogs against mycobacteria, we assayed them against a panel of gram-positive and gram-negative bacteria, as well as a few fungi. As expected INH and its analogs display a narrow spectrum of activity and are inactive against all non-mycobacterial strains evaluated, except for 4, which has modest inhibitory activity against Cryptococcus neoformans. Our findings provide an updated analysis of the structure-activity relationship of INH that we hope will serve as useful resource for the community.
Asunto(s)
Antituberculosos/farmacología , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Isoniazida/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Piridinas/química , Relación Estructura-ActividadRESUMEN
Triaza-coumarin (TA-C) is a Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitor with an IC50 (half maximal inhibitory concentration) of â¼1 µM against the enzyme. Despite this moderate target inhibition, TA-C shows exquisite antimycobacterial activity (MIC50, concentration inhibiting growth by 50% = 10 to 20 nM). Here, we investigated the mechanism underlying this potency disconnect. To confirm that TA-C targets DHFR and investigate its unusual potency pattern, we focused on resistance mechanisms. In Mtb, resistance to DHFR inhibitors is frequently associated with mutations in thymidylate synthase thyA, which sensitizes Mtb to DHFR inhibition, rather than in DHFR itself. We observed thyA mutations, consistent with TA-C interfering with the folate pathway. A second resistance mechanism involved biosynthesis of the redox coenzyme F420 Thus, we hypothesized that TA-C may be metabolized by Mtb F420-dependent oxidoreductases (FDORs). By chemically blocking the putative site of FDOR-mediated reduction in TA-C, we reproduced the F420-dependent resistance phenotype, suggesting that F420H2-dependent reduction is required for TA-C to exert its potent antibacterial activity. Indeed, chemically synthesized TA-C-Acid, the putative product of TA-C reduction, displayed a 100-fold lower IC50 against DHFR. Screening seven recombinant Mtb FDORs revealed that at least two of these enzymes reduce TA-C. This redundancy in activation explains why no mutations in the activating enzymes were identified in the resistance screen. Analysis of the reaction products confirmed that FDORs reduce TA-C at the predicted site, yielding TA-C-Acid. This work demonstrates that intrabacterial metabolism converts TA-C, a moderately active "prodrug," into a 100-fold-more-potent DHFR inhibitor, thus explaining the disconnect between enzymatic and whole-cell activity.
Asunto(s)
Antagonistas del Ácido Fólico/farmacología , Complejos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Cumarinas/química , Cumarinas/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Ácido Fólico/metabolismo , Antagonistas del Ácido Fólico/química , Genes Bacterianos , Mutación con Pérdida de Función/genética , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Oxidación-Reducción , Tetrahidrofolato Deshidrogenasa/genéticaRESUMEN
New, more-effective drugs for the treatment of lung disease caused by nontuberculous mycobacteria (NTM) are needed. Among NTM opportunistic pathogens, Mycobacterium abscessus is the most difficult to cure and intrinsically multidrug resistant. In a whole-cell screen of a compound collection active against Mycobacterium tuberculosis, we previously identified the piperidine-4-carboxamide (P4C) MMV688844 (844) as a hit against M. abscessus. Here, we identified a more potent analog of 844 and showed that both the parent and improved analog retain activity against strains representing all three subspecies of the M. abscessus complex. Furthermore, P4Cs showed bactericidal and antibiofilm activity. Spontaneous resistance against the P4Cs emerged at a frequency of 10-8/CFU and mapped to gyrA and gyrB encoding the subunits of DNA gyrase. Biochemical studies with recombinant M. abscessus DNA gyrase showed that P4Cs inhibit the wild-type enzyme but not the P4C-resistant mutant. P4C-resistant strains showed limited cross-resistance to the fluoroquinolone moxifloxacin, which is in clinical use for the treatment of macrolide-resistant M. abscessus disease, and no cross-resistance to the benzimidazole SPR719, a novel DNA gyrase inhibitor in clinical development for the treatment of mycobacterial diseases. Analyses of P4Cs in recA promoter-based DNA damage reporter strains showed induction of recA promoter activity in the wild type but not in the P4C-resistant mutant background. This indicates that P4Cs, similar to fluoroquinolones, cause DNA gyrase-mediated DNA damage. Together, our results show that P4Cs present a novel class of mycobacterial DNA gyrase inhibitors with attractive antimicrobial activities against the M. abscessus complex.
Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacología , Girasa de ADN/genética , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/genética , Micobacterias no Tuberculosas , Piperidinas/farmacologíaRESUMEN
A common strategy employed in antibacterial drug discovery is the targeting of biosynthetic processes that are essential and specific for the pathogen. Specificity in particular avoids undesirable interactions with potential enzymatic counterparts in the human host, and it ensures on-target toxicity. Synthesis of pantothenate (Vitamine B5), which is a precursor of the acyl carrier coenzyme A, is an example of such a pathway. In Mycobacterium tuberculosis (Mtb), which is the causative agent of tuberculosis (TB), pantothenate is formed by pantothenate synthase, utilizing D-pantoate and ß-Ala as substrates. ß-Ala is mainly formed by the decarboxylation of l-aspartate, generated by the decarboxylase PanD, which is a homo-oliogomer in solution. Pyrazinoic acid (POA), which is the bioactive form of the TB prodrug pyrazinamide, binds and inhibits PanD activity weakly. Here, we generated a library of recombinant Mtb PanD mutants based on structural information and PZA/POA resistance mutants. Alterations in oligomer formation, enzyme activity, and/or POA binding were observed in respective mutants, providing insights into essential amino acids for Mtb PanD's proper structural assembly, decarboxylation activity and drug interaction. This information provided the platform for the design of novel POA analogues with modifications at position 3 of the pyrazine ring. Analogue 2, which incorporates a bulky naphthamido group at this position, displayed a 1000-fold increase in enzyme inhibition, compared to POA, along with moderately improved antimycobacterial activity. The data demonstrate that an improved understanding of mechanistic and enzymatic features of key metabolic enzymes can stimulate design of more-potent PanD inhibitors.