Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2005, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263236

RESUMEN

Laser-induced fluorescence (LIF) Doppler spectroscopy using an optical vortex beam with an asymmetric intensity distribution, referred to as aOVLIF, is proposed as a new method to measure plasma flow velocity. LIF spectra were calculated numerically using typical laboratory low-temperature plasma parameters, and it was revealed that an ion flow across the beam produces a frequency shift of the spectra. This method also has the capability of temperature measurements. The propagation effects of asymmetric optical vortex beams are discussed assuming an actual experiment, and it is found that the sensitivity to the transverse flow velocity is approximately unchanged. The aOVLIF method, which exploits the inhomogeneous phase structure of optical vortices, can be applied to the determination of three-dimensional velocity vectors and promises to enhance the usefulness of conventional LIF spectroscopy using plane waves.

2.
Sci Rep ; 13(1): 15400, 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37717113

RESUMEN

Tunable diode laser absorption spectroscopy (TDLAS) is a valuable method for measuring particle flow velocities in plasma. However, conventional TDLAS using a plane-wave beam is sensitive only to the laser propagation direction. This limitation is particularly unfavorable for the observation of the particle transportation perpendicularly incident on the material in the plasma-material interaction. In this paper, we show for the first time that flow measurements perpendicular to the beam direction are possible by replacing the probe beam with an optical vortex beam. Because an optical vortex has a helical wavefront, particles moving in its field experience an azimuthal Doppler shift in addition to the translational Doppler shift. Assuming a uniform gas flow across the optical vortex, the azimuthal Doppler shift of the absorption spectrum observed in the beam cross-section varies sinusoidally in the azimuthal direction. The transverse flow velocity is derived from the amplitude of this sinusoidal variation. At transverse velocities above 70 m/s, the measurement errors are found to be less than 15%, with a mean absolute percentage error of less than 8%.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 2): 056401, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-23004873

RESUMEN

The power-off phase of pulsed low-pressure plasmas (the so-called afterglow) in noble gases is a rich field for both fundamental and application oriented research. The physics of these plasmas is complex and involves various processes: Initially, electrons cool rapidly to temperatures close to the gas temperature by evaporative cooling. At sufficiently high plasma densities the low kinetic electron energy strongly enhances three-body recombination into Rydberg states. Finally, subsequent collisional-radiative decay leads to emission of radiation and populates the metastable states of the atoms. The various steps are investigated experimentally and are compared to analytical models. This allows us to follow all steps throughout in a single experiment involving diagnostics of electron density, metastable density, and emission. Excellent agreement with the models is achieved. The mechanisms included are: (i) for electrons, balance between evaporative cooling and Coulomb collisions with ions leading to thermalization; (ii) consistent combination of re-ionization and microfield reduction of the ionization energy in the recombination rate; (iii) adiabatic balance of recombination and collisional and radiative de-excitation; and (iv) radiative population and diffusional and pooling collisional loss of metastable levels. Although the experiment is carried out in argon, the underlying physics is generally applicable for the afterglow of high-density low-pressure discharges in atomic gases.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 2): 046407, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22680586

RESUMEN

A simple analytical fluid dynamic model is developed for evaporative electron cooling in a low-pressure decaying plasma and compared to a two-dimensional simulation and experimental data for the particular case of argon. Measured electron temperature and density developments are fully reproduced by the ab initio model and the simulation. Further, it is shown that in the late afterglow thermalization of electrons occurs by coupling to the ion fluid via Coulomb collisions at sufficiently high electron densities and not by coupling to the neutral background.

5.
Rev Sci Instrum ; 80(5): 053505, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19485505

RESUMEN

A high resolution laser induced fluorescence (LIF) system has been developed to measure the flow velocity field of neutral particles in an electron-cyclotron-resonance argon plasma. The flow velocity has been determined by the Doppler shift of the LIF spectrum, which is proportional to the velocity distribution function. Very high accuracy in velocity determination has been achieved by installing a saturated absorption spectroscopy unit into the LIF system, where the absolute value and scale of laser wavelength are determined by using the Lamb dip and the fringes of a Fabry-Perot interferometer. The minimum detectable flow velocity of a newly developed LIF system is +/-2 m/s, and this performance remains unchanged in a long-time experiment. From the radial measurements of LIF spectra of argon metastable atoms, it is found that there exists an inward flow of neutral particles associated with neutral depletion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...