Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39295215

RESUMEN

Polysorbates (PS) are commonly used as stabilizers of biopharmaceuticals such as monoclonal antibodies (mAbs). However, they are prone to chemical and enzymatic degradation. The latter can be caused by residual host cell proteins (HCPs) in the drug substance. Degradation affects the functionality of the PS surfactant which can lead to formation of particles. An increasing number of publications describe enzymatic PS degradation. Significant efforts have been made to characterize HCP removal during Downstream Processing (DSP) of mAbs and to develop mitigation strategies. Here we describe the use of glycine buffer for acidic elution in Protein A affinity chromatography compared to acetate buffer, which is more commonly used in the biopharmaceutical industry. Increased turbidity was observed during pH re-adjustment after low pH virus inactivation when using glycine buffer. Analytical data suggests that this turbidity is caused by the formation of precipitates which include HCP and DNA impurities. Additionally, as a zwitterion, glycine does not contribute to conductivity; this further enhances HCP removal during anion-exchange flow-through chromatography. Although glycine is well known as a possible elution buffer for Protein A affinity chromatography, its positive impact on HCP removal and PS stability have not yet been described in literature.

2.
Biotechnol Bioeng ; 118(3): 1091-1104, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33200817

RESUMEN

A high degree of charge heterogeneity is an unfavorable phenomenon commonly observed for therapeutic monoclonal antibodies (mAbs). Removal of these impurities during manufacturing often comes at the cost of impaired step yields. A wide spectrum of posttranslational and chemical modifications is known to modify mAb charge. However, a deeper understanding of underlying mechanisms triggering charged species would be beneficial for the control of mAb charge variants during bioprocessing. In this study, a comprehensive analytical investigation was carried out to define the root causes and mechanisms inducing acidic variants of an immunoglobulin G1-derived mAb. Characterization of differently charged species by liquid chromatography-mass spectrometry revealed the reduction of disulfide bonds in acidic variants, which is followed by cysteinylation and glutathionylation of cysteines. Importantly, biophysical stability and integrity of the mAb are not affected. By in vitro incubation of the mAb with the reducing agent cysteine, disulfide bond degradation was directly linked to an increase of numerous acidic species. Modifying the concentrations of cysteine during the fermentation of various mAbs illustrated that redox potential is a critical aspect to consider during bioprocess development with respect to charge variant control.


Asunto(s)
Anticuerpos Monoclonales , Cisteína/química , Disulfuros/química , Inmunoglobulina G , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Células CHO , Técnicas de Cultivo de Célula , Cromatografía Liquida , Cricetulus , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/química , Inmunoglobulina G/aislamiento & purificación
3.
Biotechnol Bioeng ; 115(10): 2405-2415, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29959868

RESUMEN

Glucose oxidase (GOx) is of high industrial interest for glucose sensing because of its high ß-d-glucose specificity. The efficient and specific electrochemical communication between the redox center and electrodes is crucial to ensure accurate glucose determination. The efficiency of the electron transfer rates (ETR) with GOx, together with quinone diamine based mediators, is low and differs even among mediator derivatives. To design optimized enzyme-mediator couples and to describe a mediator binding model, a joint experimental and computational study was performed based on an oxygen-independent GOx variant V7 and two quinone diimine based electron mediators (QDM-1 and QDM-2), which differ in polarity and size, and ferrocenemethanol (FM). A site saturation library at position 414 was screened with all three mediators and yielded four beneficial substitutions Tyr, Met, Leu, and Val. The variants showed increased mediator activity for the more polar QDM-2 with a simultaneously decreased activity for the less polar and smaller QDM-1 and for FM. The variant GOx V7-I414Y exhibited the biggest change for the quinone diimine derivatives compared with V7 (QDM-1: 55.9 U/mg V7, 33.2 U/mg V7-I414Y; QDM-2: 2.7 U/mg V7, 12.9 U/mg V7-I414Y). Theoretical ETR calculated based on the Marcus theory were in good agreement with the experimental results. Molecular docking studies revealed a preferable binding of the two QD mediators directly in the active site, 3.5 Å away from the N5 atom of the flavin adenine dinucleotide (FAD) and in direct vicinity to position 414. In summary, position 414 in the active site was identified to modulate the electron shuttling from the FAD of the GOx to small water-soluble mediators dependent on the polarity and size of residue 414 and on the polarity and size of the mediator. The presented mediator binding model offers a promising possibility for the design of optimized enzyme-mediator couples.


Asunto(s)
Benzoquinonas/química , Glucosa Oxidasa/química , Glucosa/química , Simulación del Acoplamiento Molecular , Oxígeno/química , Ingeniería de Proteínas , Dominio Catalítico , Transporte de Electrón , Glucosa Oxidasa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
4.
Biosens Bioelectron ; 50: 84-90, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23835222

RESUMEN

Glucose oxidase is an oxidoreductase exhibiting a high ß-D-glucose specificity and high stability which renders glucose oxidase well-suited for applications in diabetes care. Nevertheless, GOx activity is highly oxygen dependent which can lead to inaccuracies in amperometric ß-D-glucose determinations. Therefore a directed evolution campaign with two rounds of random mutagenesis (SeSaM followed by epPCR), site saturation mutagenesis studies on individual positions, and one simultaneous site saturation library (OmniChange; 4 positions) was performed. A diabetes care well suited mediator (quinone diimine) was selected and the GOx variant (T30V I94V) served as starting point. For directed GOx evolution a microtiter plate detection system based on the quinone diimine mediator was developed and the well-known ABTS-assay was applied in microtiter plate format to validate oxygen independency of improved GOx variants. Two iterative rounds of random diversity generation and screening yielded to two subsets of amino acid positions which mainly improved activity (A173, A332) and oxygen independency (F414, V560). Simultaneous site saturation of all four positions with a reduced subset of amino acids using the OmniChange method yielded finally variant V7 with a 37-fold decreased oxygen dependency (mediator activity: 7.4 U/mg WT, 47.5 U/mg V7; oxygen activity: 172.3 U/mg WT, 30.1 U/mg V7). V7 is still highly ß-D-glucose specific, highly active with the quinone diimine mediator and thermal resistance is retained (prerequisite for GOx coating of diabetes test stripes). The latter properties and V7's oxygen insensitivity make V7 a very promising candidate to replace standard GOx in diabetes care applications.


Asunto(s)
Aspergillus niger/enzimología , Técnicas Biosensibles/métodos , Evolución Molecular Dirigida , Glucosa Oxidasa/genética , Glucosa/análisis , Aspergillus niger/genética , Evolución Molecular Dirigida/métodos , Glucosa/metabolismo , Glucosa Oxidasa/metabolismo , Oxígeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...