Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Virus Genes ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744749

RESUMEN

Human astroviruses (HAstVs) are considered important causative pathogens of acute gastroenteritis (AGE) in children under 5 years of age worldwide, along with group A rotavirus (RVA), norovirus (NoV), and enteric adenovirus (EAdV). The present study was aimed to both detect HAstV and its co-infections and investigate genetic analysis of circulating HAstV and co-infected virus in hospitalized children under 5 years of age with AGE in Iran. Accordingly, a sum of 200 stool specimens were screened by PCR for HAstV during 2021-2022. The HAstV was found in 0.5% of 200 specimens (n = 1) while was co-infected with RVA. The genetic and phylogenetic analysis indicated HAstV1 genotype, which clustered with viruses from lineage 1b, which has not been previously reported in Iran. The detected RVA strain belonged to G1 lineage II/P[8]-lineage III, which has been reported previously in Iran as the most common strain. The further genetic analysis of RVA VP6 and NSP4 demonstrated an atypical genotype pattern G1P[8]-I1-E2, as a mono-reassortant of a Wa-like genogroup, which appeared to be reassorted with the NSP4 gene of E2 genotype of the G2P[4] DS-1 genogroup. Although the clinical outcomes of the AGE-causing viruses co-infection is not yet entirely clear, it seems that future studies will be helpful to merge clinical and epidemiological data of co-infecting viruses for a more accurate medical and clinical relevance in symptomatic children.

2.
Avicenna J Med Biotechnol ; 16(2): 120-129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618508

RESUMEN

Background: Colorectal Cancer (CRC) represents a significant global health challenge, and its progression, resistance to therapy, and metastasis are strongly influenced by the tumor microenvironment, including factors like hypoxia. This study explores the impact of High Mobility Group Box 1 (HMGB1) overexpression on CRC cell migration, while identifying potential genes associated with this process. Methods: To explore this, we developed oncolytic virotherapy, resulting in HSVHMGB1, an oncolytic Herpes simplex virus that expresses HMGB1. HMGB1 is known its role in cancer progression, particularly in the context of cancer cell migration. Results: Contrary to expectations, our scratch assays indicated that HSV-HMGB1 did not significantly induce migration in CRC cells, suggesting that HMGB1 might not directly contribute to this process. Employing microarray analysis, we investigated gene expression changes linked to CRC cell migration, leading to construction of a Protein-Protein Interaction (PPI) network. This network revealed the presence of hub proteins, including as NDRG1, LGALS1, and ANGPTL4, which are recognized for their roles in cancer cell migration. The differential expression of these genes under hypoxic conditions was further validated using quantitative RT-PCR, aligning with the findings from our microarray data. Conclusion: Our findings emphasize the complex regulation of CRC cell migration, and provides valuable insights into potential molecular mechanisms and pathways. These findings have implications for further research into cancer progression and the development of therapeutic strategies.

3.
J Med Virol ; 96(3): e29501, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38445563

RESUMEN

While infection with high-risk human papillomavirus (HPV) types is necessary for cervical cancer (CC) development, it is not enough, and other risk factors are required. Several studies have reported the activation of HERV-K in different cancers; however, the investigation of HERV-K expression levels in CC is scarce. In this study, it was hypothesized that activation of HERV-K could play an essential role in CC development. In this order, the expression levels of HERV-K Env, Np9, and Rec transcripts were investigated on 147 normal to CC uterine cervical tissues using quantitative real-time PCR. The significantly higher levels of HERV-K Env and Np9 transcripts were found in patients with cervical intraepithelial neoplasia (CIN) II-III and CC groups compared to those in the normal/CIN I group. Expression of Rec transcript was also higher only in the CC group than normal/CIN I group. Among CC patients, meaningfully higher levels of HERV-K Env and Np9 transcripts were found in patients with squamous cell carcinoma rather than in adenocarcinoma. When only the HPV 16 positive samples were investigated, it was found that the mean difference in Env and Np9 mRNA levels was meaningfully higher among precancer lesions and the cancer group in comparison with the normal group. However, the Rec mRNA level showed no significant differences. The association between the expression of HERV-K genes was investigated, and a significant positive correlation of Env expression with Np9 transcript was found only in the group with precancer lesions (R = 0.6, p = 0.0037). Moreover, a significant positive correlation was found between Rec and Np9 transcripts in patients with normal cervix tissues (R = 0.26, p = 0.033). However, no correlations were observed between the expression of Env and Rec in the three groups. In conclusion, our results showed that HERV-K transcripts, especially Env and Np9, upregulated during cervical lesion progression. These findings highlight the potential use of HERV-K Env and Np9 as biomarkers for CC diagnosis and prognosis. Further investigation is needed to determine the clinical utility of these markers and whether targeting HERV-K oncogenes could be a viable therapeutic strategy for CC.


Asunto(s)
Adenocarcinoma , Carcinoma de Células Escamosas , Retrovirus Endógenos , Neoplasias del Cuello Uterino , Femenino , Humanos , Retrovirus Endógenos/genética , ARN Mensajero/genética
4.
BMC Biotechnol ; 24(1): 1, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178096

RESUMEN

BACKGROUND: The chimeric antigen receptor-expressing T (CAR-T) cells for cancer immunotherapy have obtained considerable clinical importance. CAR T cells need an optimized intracellular signaling domain to get appropriately activated and also for the proper antigen recognition, the length and composition of the extracellular spacer are critical factors. RESULTS: We constructed two third-generation nanobody-based VEGFR2-CARs containing either IgG1 hinge-CH2-CH3 region or hinge-only as long or short extracellular spacers, respectively. Both CARs also contained intracellular activating domains of CD28, OX40, and CD3ζ. The T cells from healthy individuals were transduced efficiently with the two CARs, and showed increased secretion of IL-2 and IFN-γ cytokines, and also CD69 and CD25 activation markers along with cytolytic activity after encountering VEGFR2+ cells. The VEGFR2-CAR T cells harboring the long spacer showed higher cytokine release and CD69 and CD25 expression in addition to a more efficient cytolytic effect on VEGFR2+ target cells. CONCLUSIONS: The results demonstrated that the third-generation anti-VEGFR2 nanobody-based CAR T cell with a long spacer had a superior function and potentially could be a better candidate for solid tumor treatment.


Asunto(s)
Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T , Humanos , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Linfocitos T , Citocinas
5.
Life Sci ; 340: 122456, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266814

RESUMEN

AIMS: Human papillomavirus (HPV) infections are highly prevalent globally. While preventive HPV vaccines exist, therapeutic vaccines are needed to treat existing HPV lesions and malignancies. This study evaluated the immunostimulatory and anti-tumor effects of three therapeutic vaccine candidates based on the recombinant protein, tumor cell lysate (TCL), and engineered exosome (Exo) harboring the heat shock protein 27 (Hsp27)-E7 fusion construct in mouse model. MAIN METHODS: At first, the recombinant Hsp27-E7 protein was generated in E. coli expression system. Then, tumor cell lysates-based and engineered exosomes-based vaccine constructs harboring green fluorescent protein (GFP) and Hsp27-E7 were produced using lentiviral system. Finally, their immunological and antitumor effects were investigated in both prophylactic and therapeutic experiments. KEY FINDINGS: Our data showed that the recombinant Hsp27-E7 protein, TCL-Hsp27-E7 and Exo-Hsp27-E7 regimens can induce the highest level of IFN-γ, TNF-α and Granzyme B, respectively. The percentage of tumor-free mice was identical for three vaccine strategies (survival rate: 75 %) in both prophylactic and therapeutic experiments. Generally, the TCL-Hsp27-E7, Exo-Hsp27-E7 and recombinant Hsp27-E7 protein regimens induced effective immune responses toward Th1 and CTL activity, and subsequently antitumor effects in mouse model. SIGNIFICANCE: Regarding to higher Granzyme B secretion, lower tumor growth and more safety, the Exo-Hsp27-E7 regimen can be considered as the most promising HPV vaccination strategy.


Asunto(s)
Exosomas , Neoplasias , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Humanos , Animales , Ratones , Vacunas contra Papillomavirus/genética , Granzimas/metabolismo , Proteínas de Choque Térmico HSP27 , Exosomas/metabolismo , Infecciones por Papillomavirus/prevención & control , Escherichia coli/metabolismo , Proteínas E7 de Papillomavirus/genética , Ratones Endogámicos C57BL
6.
Iran Biomed J ; 27(6): 349-56, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37978985

RESUMEN

Background: The E6 oncoprotein of HPV plays a crucial role in promoting cell proliferation and inhibiting apoptosis, leading to tumor growth. Non-viral vectors such as nona-arginine (R9) peptides have shown to be potential as carriers for therapeutic molecules. This study aimed to investigate the efficacy of nona-arginine in delivering E6 shRNA and suppressing the E6 gene of HeLa cells in vitro. Methods: HeLa cells carrying E6 gene were treated with a complex of nona-arginine and E6 shRNA. The complex was evaluated using gel retardation assay and FESEM microscopy. The optimal N/P ratio for R9 peptide to transfect HeLa cells with luciferase gene was determined. Relative real-time PCR was used to evaluate the efficiency of mRNA suppression efficiency for E6 shRNA, while the effect of E6 shRNA on cell viability was measured using an MTT assay. Results: The results indicated that R9 efficiently binds to shRNA and effectively transfects E6 shRNA complexes at N/P ratios greater than 30. Transfection with R9 and PEI complexes resulted in a significant toxicity compared to the scrambled plasmid, indicating selective toxicity for HeLa cells. Real-time PCR confirmed the reduction of E6 mRNA expression levels in the cells transfected with anti-E6 shRNA. Conclusion: The study suggests that R9 is a promising non-viral gene carrier for transfecting E6 shRNA in vitro, with significant transfection efficiency and minimal toxicity.


Asunto(s)
Proteínas Oncogénicas Virales , Neoplasias del Cuello Uterino , Humanos , Femenino , ARN Interferente Pequeño/genética , Células HeLa , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Proteínas Represoras/metabolismo , Apoptosis/genética , ARN Mensajero/genética , Arginina/farmacología , Arginina/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Transfección , Línea Celular Tumoral
7.
Sci Rep ; 13(1): 16801, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798448

RESUMEN

To relieve the limitations of the human papillomavirus (HPV) vaccines based on L1 capsid protein, vaccine formulations based on RG1 epitope of HPV L2 using various built-in adjuvants are under study. Herein, we describe design and construction of a rejoined peptide (RP) harboring HPV16 RG1 epitope fused to TLR4/5 agonists and a tetanus toxoid epitope, which were linked by the (GGGS)3 linker in tandem. In silico analyses indicated the proper physicochemical, immunogenic and safety profile of the RP. Docking analyses on predicted 3D model suggested the effective interaction of TLR4/5 agonists within RP with their corresponding TLRs. Expressing the 1206 bp RP-coding DNA in E. coli produced a 46 kDa protein, and immunization of mice by natively-purified RP in different adjuvant formulations indicated the crucial role of the built-in adjuvants for induction of anti-RG1 responses that could be further enhanced by combination of TLR7 agonist/alum adjuvants. While the TLR4/5 agonists contributed in the elicitation of the Th2-polarized immune responses, combination with TLR7 agonist changed the polarization to the balanced Th1/Th2 immune responses. Indeed, RP + TLR7 agonist/alum adjuvants induced the strongest immune responses that could efficiently neutralize the HPV pseudoviruses, and thus might be a promising formulation for an inexpensive and cross-reactive HPV vaccine.


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Animales , Ratones , Humanos , Epítopos , Receptor Toll-Like 4 , Receptor Toll-Like 7 , Escherichia coli/genética , Infecciones por Papillomavirus/prevención & control , Adyuvantes Inmunológicos/farmacología , Formación de Anticuerpos , Ratones Endogámicos BALB C
8.
Virology ; 588: 109903, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37832344

RESUMEN

Given the efficacy and safety issues of the WHO for approved/prequalified live attenuated rotavirus (RV) vaccines, studies on alternative non-replicating modals and proper RV antigens are actively undertaken. Herein, we report the novel chimeric hepatitis B core-virus like particles (VLPs) carrying RV VP8*26-231 protein of a P [8] strain (cVLPVP8*), as a parenteral VLP RV vaccine candidate. SDS-PAGE and Western blotting analyses indicated the expected size of the E. coli-derived HBc-VP8* protein that self-assembled to cVLPVP8* particles. Immunization in mice indicated development of higher levels of IgG and IgA as well as higher IgG1/IgG2a ratios by cVLPVP8* vaccination compared to the VP8* alone. Assessment of neutralizing antibodies (nAbs) indicated development of heterotypic nAbs with cross-reactivity to a heterotypic RV strain by cVLPVP8* immunization compared to VP8* alone. The observed anti-VP8* cross-reactivity might indicate the possibility of developing a Pan-genomic RVA vaccine based on the cVLPVP8* formulation that deserves further challenge studies.


Asunto(s)
Hepatitis B , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Animales , Ratones , Rotavirus/genética , Escherichia coli , Anticuerpos Antivirales , Vacunas contra Rotavirus/genética , Infecciones por Rotavirus/prevención & control , Modelos Animales de Enfermedad , Inmunoglobulina G
9.
Int Immunopharmacol ; 117: 109887, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36841155

RESUMEN

As an interesting cancer immunotherapy approach, cancer vaccines have been developed to deliver tumor antigens and adjuvants to antigen-presenting cells (APCs). Although the safety and easy production shifted the vaccine designing platforms toward the subunit vaccines, their efficacy is limited due to inefficient vaccine delivery. Nanotechnology-based vaccines, called nanovaccines, address the delivery limitations through co-delivery of antigens and adjuvants into lymphoid organs and APCs and their intracellular release, leading to cross-presentation of antigens and induction of potent anti-tumor immune responses. Although the nanovaccines, either as encapsulating agents or biomimetic nanoparticles, exert the desired anti-tumor activities, there is evidence that the mixing formulation to form nanocomplexes between antigens and adjuvants based on the electrostatic interactions provokes high levels of immune responses owing to Ags' availability and faster release. Here, we summarized the various platforms for developing cancer vaccines and the advantages of using delivery systems. The cancer nanovaccines, including nanoparticle-based and biomimetic-based nanovaccines, are discussed in detail. Finally, we focused on the nanocomplexes formation between antigens and adjuvants as promising cancer nanovaccine platforms.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Humanos , Vacunas contra el Cáncer/uso terapéutico , Adyuvantes Inmunológicos , Neoplasias/terapia , Antígenos de Neoplasias , Inmunoterapia
10.
Iran Biomed J ; 27(1): 23-33, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36624663

RESUMEN

Background: Hypoxic tumor microenvironment is one of the important impediments for conventional cancer therapy. This study aimed to computationally identify hypoxia-related messenger RNA (mRNA) signatures in nine hypoxic-conditioned cancer cell lines and investigate their role during hypoxia. Methods: Nine RNA sequencing (RNA-Seq) expression data sets were retrieved from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in each cancer cell line. Then 23 common DEGs were selected by comparing the gene lists across the nine cancer cell lines. Reverse transcription-quantitative PCR (qRT-PCR) was performed to validate the identified DEGs. Results: By comparing the data sets, GAPDH, LRP1, ALDOA, EFEMP2, PLOD2, CA9, EGLN3, HK, PDK1, KDM3A, UBC, and P4HA1 were identified as hub genes. In addition, miR-335-5p, miR-122-5p, miR-6807-5p, miR-1915-3p, miR-6764-5p, miR-92-3p, miR-23b-3p, miR-615-3p, miR-124-3p, miR-484, and miR-455-3p were determined as common micro RNAs. Four DEGs were selected for mRNA expression validation in cancer cells under normoxic and hypoxic conditions with qRT-PCR. The results also showed that the expression levels determined by qRT-PCR were consistent with RNA-Seq data. Conclusion: The identified protein-protein interaction network of common DEGs could serve as potential hypoxia biomarkers and might be helpful for improving therapeutic strategies.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Transcripción Reversa , MicroARNs/genética , MicroARNs/metabolismo , Hipoxia/genética , Línea Celular , Reacción en Cadena en Tiempo Real de la Polimerasa , ARN Mensajero/genética , Microambiente Tumoral , Histona Demetilasas con Dominio de Jumonji/genética
11.
J Med Virol ; 95(2): e28529, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36698258

RESUMEN

The present study was conducted to monitor the genotypes of circulating species A rotavirus (RVA) in Iran and investigate genetic linkages between specific RVA VP7, VP4, VP6, and NSP4 segments. For this purpose, 48 RVA strains were detected during the 2021-2022 seasons. The two combinations of G9P[4] and G9P[8] RVA strains were predominant. However, several other combinations of RVA also were detected. Based on the distribution of I and E genotypes (46 strains) with respect to G and P, the most common strains were G9P[4]-I2-E2 (19.5%), G9P[4]-I2-E1 (6.5%), G9P[4]-I1-E1 (4.3%), G9P[8]-I1-E1 (19.5%), and G9P[8]-I2-E2 (10.9%), which were followed by several other combinations of G and P RVA strains with different pattern of I-E genotypes and also emerging, rare and uncommon strains. The present study described the continued circulation of G9 strains with the emergence of uncommon G9P[4] and G9P[8] reassortants with three and two different I-E genotypes, respectively, which have not been reported previously in Iran. Our findings indicated that these uncommon strains exhibited a unique genotype pattern comprising a mixture of genogroup 1 and 2 genes and suggest the need for further analysis of rare, uncommon, and emerging strains of RVA at all 11 gene segments to determine intergenogroup and intragenotype reassortments.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Rotavirus , Niño , Humanos , Rotavirus/genética , Irán , Filogenia , Genotipo , Genoma Viral
12.
Front Mol Biosci ; 9: 1039324, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36545512

RESUMEN

For adenoviruses (Ads) to be optimally effective in cancer theranostics, they need to be retargeted toward target cells and lose their natural tropism. Typically, this is accomplished by either engineering fiber proteins and/or employing bispecific adapters, capable of bonding Ad fibers and tumor antigen receptors. This study aimed to present a simple and versatile method for generating Ad-based bionanoparticles specific to target cells, using the SpyTag-SpyCatcher system. The SpyTag peptide was inserted into the HI loop of fiber-knob protein, which could act as a covalent anchoring site for a targeting moiety fused to a truncated SpyCatcher (SpyCatcherΔ) pair. After confirming the presence and functionality of SpyTag on the Ad type-5 (Ad5) fiber knob, an adapter molecule, comprising of SpyCatcherΔ fused to an anti-vascular endothelial growth factor receptor 2 (VEGFR2) nanobody, was recombinantly expressed in Escherichia coli and purified before conjugation to fiber-modified Ad5 (fmAd5). After evaluating fmAd5 detargeting from its primary coxsackie and adenovirus receptor (CAR), the nanobody-decorated fmAd5 could be efficiently retargeted to VEGFR2-expressing 293/KDR and human umbilical vein endothelial (HUVEC) cell lines. In conclusion, a plug-and-play platform was described in this study for detargeting and retargeting Ad5 through the SpyTag-SpyCatcher system, which could be potentially applied to generate tailored bionanoparticles for a broad range of specific targets; therefore, it can be introduced as a promising approach in cancer nanotheranostics.

13.
Cancer Cell Int ; 22(1): 370, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424577

RESUMEN

Viruses are completely dependent on host cell machinery for their reproduction. As a result, factors that influence the state of cells, such as signaling pathways and gene expression, could determine the outcome of viral pathogenicity. One of the important factors influencing cells or the outcome of viral infection is the level of oxygen. Recently, oncolytic virotherapy has attracted attention as a promising approach to improving cancer treatment. However, it was shown that tumor cells are mostly less oxygenated compared with their normal counterparts, which might affect the outcome of oncolytic virotherapy. Therefore, knowing how oncolytic viruses could cope with stressful environments, particularly hypoxic environments, might be essential for improving oncolytic virotherapy.

14.
Front Immunol ; 13: 1012806, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311790

RESUMEN

Despite the fact that the new drugs and targeted therapies have been approved for cancer therapy during the past 30 years, the majority of cancer types are still remain challenging to be treated. Due to the tumor heterogeneity, immune system evasion and the complex interaction between the tumor microenvironment and immune cells, the great majority of malignancies need multimodal therapy. Unfortunately, tumors frequently develop treatment resistance, so it is important to have a variety of therapeutic choices available for the treatment of neoplastic diseases. Immunotherapy has lately shown clinical responses in malignancies with unfavorable outcomes. Oncolytic virus (OV) immunotherapy is a cancer treatment strategy that employs naturally occurring or genetically-modified viruses that multiply preferentially within cancer cells. OVs have the ability to not only induce oncolysis but also activate cells of the immune system, which in turn activates innate and adaptive anticancer responses. Despite the fact that OVs were translated into clinical trials, with T-VECs receiving FDA approval for melanoma, their use in fighting cancer faced some challenges, including off-target side effects, immune system clearance, non-specific uptake, and intratumoral spread of OVs in solid tumors. Although various strategies have been used to overcome the challenges, these strategies have not provided promising outcomes in monotherapy with OVs. In this situation, it is increasingly common to use rational combinations of immunotherapies to improve patient benefit. With the development of other aspects of cancer immunotherapy strategies, combinational therapy has been proposed to improve the anti-tumor activities of OVs. In this regard, OVs were combined with other biotherapeutic platforms, including various forms of antibodies, nanobodies, chimeric antigen receptor (CAR) T cells, and dendritic cells, to reduce the side effects of OVs and enhance their efficacy. This article reviews the promising outcomes of OVs in cancer therapy, the challenges OVs face and solutions, and their combination with other biotherapeutic agents.


Asunto(s)
Melanoma , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Inmunoterapia , Microambiente Tumoral , Anticuerpos
15.
Hum Vaccin Immunother ; 18(5): 2079323, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35714271

RESUMEN

Flaviviruses are arthropod-borne viruses (arboviruses) that have been recently considered among the significant public health problems in defined geographical regions. In this line, there have been vaccines approved for some flaviviruses including dengue virus (DENV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), and tick-borne encephalitis virus (TBEV), although the efficiency of such vaccines thought to be questionable. Surprisingly, there are no effective vaccine for many other hazardous flaviviruses, including West Nile and Zika viruses. Furthermore, in spite of approved vaccines for some flaviviruses, for example DENV, alternative prophylactic vaccines seem to be still needed for the protection of a broader population, and it originates from the unsatisfying safety, and the efficacy of vaccines that have been introduced. Thus, adenovirus vector-based vaccine candidates are suggested to be effective, safe, and reliable. Interestingly, recent widespread use of adenovirus vector-based vaccines for the COVID-19 pandemic have highlighted the importance and feasibility of their widespread application. In this review, the applicability of adenovirus vector-based vaccines, as promising approaches to harness the diseases caused by Flaviviruses, is discussed.


Asunto(s)
Vacunas contra el Adenovirus , COVID-19 , Virus del Dengue , Virus de la Encefalitis Transmitidos por Garrapatas , Infección por el Virus Zika , Virus Zika , Adenoviridae/genética , Vacunas contra la COVID-19 , Humanos , Infección por el Virus Zika/prevención & control
16.
Mol Cell Probes ; 63: 101818, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35461964

RESUMEN

One-third of the world's population is at risk of Dengue infection. Envelope domain 3 (EDIII) and nonstructural protein1 (NS1) proteins as the potent antigenicity regions for humoral immunity in addition to the bc loop region as a completely conserved region have been used for designing protective vaccines. We aimed to design vaccine candidates according to the bc loop, EDIII, and NS1 regions of Dengue serotype2 to be used as vaccine candidates for all serotypes of Dengue virus especially serotype 2. Firstly the bc loop region with EDII fragments at both ends as well as EDIII and NS1 regions were used which were linked with the GGGGS linker to the bc loop region. In two other strategies, the bc loop with EDII and NS1 fragments at both ends was used to increase its structural stability. Tertiary structure prediction and validation of vaccine constructs indicated that all vaccine constructs were modeled with high quality and stable structure during molecular dynamics simulation. B cell epitope mapping by Bepipred and ElliPro methods confirmed the existence of high potent epitopes in the bc loop, EDIII, and NS1 regions in both linear and conformational B cell epitopes. Furthermore, molecular docking for the bc loop region demonstrated that all designed vaccines have a higher affinity to interact with 1C19 monoclonal antibody than only the bc loop region or bc loop epitope in the protein EII. Our data of in silico studies indicated that the designed vaccines could effectively induce humoral immunity against four dengue serotypes.


Asunto(s)
Virus del Dengue , Dengue , Vacunas , Anticuerpos Antivirales , Dengue/prevención & control , Virus del Dengue/genética , Epítopos de Linfocito B , Humanos , Simulación del Acoplamiento Molecular , Proteínas del Envoltorio Viral/genética
17.
Cancer Cell Int ; 22(1): 164, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477503

RESUMEN

BACKGROUND: Novel strategies are required since the hypoxic tumor microenvironment is one of the important impediments for conventional cancer therapy. High mobility group box 1 (HMGB1) protein can block aerobic respiration in cancer cells. We hypothesized that HMGB1could also kill the colorectal cancer cells during hypoxia. METHODS: In this study, we developed oncolytic herpes simplex virus type 1 expressing HMGB1 protein (HSV-HMGB1) and investigated the cytotoxic effect of HSV-HMGB1 and its parental virus (HSV-ble) on three colorectal cancer cells (HCT116, SW480, and HT29) under normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. We further identified potential autophagy- related genes in HT29 cells by retrieving mRNA expression microarray datasets from the Gene Expression Omnibus database. These genes were then detected in HT29 cells infected with HSV-HMGB1 and HSV-ble during normoxia and hypoxia by Real-Time quantitative PCR (qRT-PCR). RESULTS: The cytotoxic effect of HSV-HMGB1 was significantly higher than that of HSV-ble during normoxia; however, during hypoxia, HSV-HMGB1 enhanced the viability of HT29 cells at MOI 0.1. Analyzing the cell death pathway revealed that HSV-HMGB1 induced autophagy in HT29 cells under hypoxic conditions. CONCLUSION: In conclusion, it appears that oncolytic virotherapy is cell context-dependent. Therefore, understanding the cancer cells' characteristics, microenvironment, and cell signaling are essential to improve the therapeutic strategies.

18.
Iran Biomed J ; 26(4): 269-78, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35468712

RESUMEN

Background: Self-amplifying mRNA is the next-generation vaccine platform with the potential advantages in efficacy and speed of development against infectious diseases and cancer. The main aim was to present optimized and rapid methods for Semliki Forest virus (SFV)-PD self-amplifying mRNA (SAM) preparation, its packaging, and titer determination. These protocols are provided for producing and harvesting the high yields of virus replicon particle (VRP)-packaged SAM for vaccine studies. Methods: pSFV-PD-EGFP plasmid was linearized and subjected to in vitro transcription. Different concentrations of SFV-PD SAM were first transfected into human embryonic kidney 293 cells (HEK-293) and baby hamster kidney cell line 21 (BHK-21) cell lines, and EGFP expression at different time points was evaluated by fluorescent microscopy. Replicon particle packaging was achieved by co-transfection of SFV-PD SAM and pSFV-Helper2 RNA into BHK-21 cells. The VRPs were concentrated using ultrafiltration with 100 kDa cut-off. The titers of replicon particles were determined by reverse transcription quantitative real-time PCR (RT-qPCR). Results: In vitro transcribed SAM encoding EGFP was successfully transfected and expressed in HEK-293 and BHK-21 cell lines. Higher levels of EGFP expression was observed in BHK-21 compared to HEK-293 cells showing more stable protein overexpression and VRP packaging. Using ultrafiltration, the high yields of purified SFV-PD-EGFP particles were rapidly obtained with only minor loss of replicon particles. Accurate and rapid titer determination of replication-deficient particles was achieved by RT-qPCR. Conclusion: Using optimized methods for SAM transfection, VRP packaging, and concentration, high yields of SFV-PD VRPs could be produced and purified. The RT-qPCR demonstrated to be an accurate and rapid method for titer determination of replication deficient VRPs.


Asunto(s)
Vectores Genéticos , Virus de los Bosques Semliki , Animales , Cricetinae , Células HEK293 , Humanos , ARN Mensajero , Transfección , Vacunas Sintéticas , Vacunas de ARNm
19.
Parasitol Int ; 89: 102577, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35301120

RESUMEN

The main aims of the present study were to design a fusion protein of Leishmania major stress-inducible protein 1 (LmSTI1) and Phlebotomus papatasi SP15 (PpSP15), and to express it in the form of alphavirus packaged Self-amplifying mRNA (SAM). Two combinations, PpSP15-LmSTI1 and LmSTI1-PpSP15 fusion forms, were analyzed for folding and minimum free energies of the mRNA. Conformational studies on 3D modeled fusion and native forms were performed, and the Root-Mean-Square-distance (RMSD) of the Cα atomic coordinates were calculated. Antigenicity and stability were predicted using bioinformatics tools. The coding sequences of PpSP15-LmSTI1 fusion, PpSP15, and LmSTI1 were cloned into an alphavirus-based vector and used to produce the SAM constructs. All the subcloned constructs were then subjected to packaging in the form of viral replicon particles (VRPs),and were evaluated for their ability to infect BHK-21 cells and express the recombinant fusion proteins. The in-silico analysis indicated that the PpSP15-LmSTI1 combination could be a promising candidate based on lower folding ΔG of mRNA, higher protein antigenicity and lower instability indexes, and less conformational changes compared to the native proteins and the LmSTI1-PpSP15 fusion form. Packaged SAM encoding fusion and native antigens are used for infection of mammalian cells and for recombinant protein expression. This is the first study on in silico designing and successful packaging of an alphavirus-derived SAM in the form of the VRPs to target leishmaniasis.


Asunto(s)
Alphavirus , Leishmania major , Leishmaniasis Cutánea , Phlebotomus , Vacunas , Alphavirus/genética , Animales , Leishmania major/genética , Mamíferos , Phlebotomus/genética , ARN Mensajero/genética , Proteínas Recombinantes
20.
Microb Pathog ; 163: 105405, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35045328

RESUMEN

Inconveniences associated with the efficacy and safety of the World Health Organization (WHO) approved/prequalified live attenuated rotavirus (RV) vaccines, sounded for finding alternative non-replicating modals and proper RV antigens (Ags). Herein, we report the development of a RV candidate vaccine based on the combination of RV VP6 nanospheres (S) and NSP4112-175 proteins (VP6S + NSP4). Self-assembled VP6S protein was produced in insect cells. Analyses by western blotting and transmission electron microscopy (TEM) indicated expression of VP6 trimer structures with sizes of ≥140 kDa and presence of VP6S. Four group of mice were immunized (2-dose formulation) intra-peritoneally (IP) by either¨VP6S + NSP4¨ or each protein alone (VP6S or NSP4112-175) emulsified in aluminium hydroxide or control. Results indicated that VP6S + NSP4 formulation induced significant anti-VP6 IgG (P < 0.001) and IgA (P < 0.05) as well as anti-NSP4 IgG (P < 0.001) and enhancement of protective immunity. Analyses of anti-VP6S and anti-NSP4 IgG subclass (IgG1 and IgG2a) showed IgG1/IgG2a ≥6 and IgG1/IgG2a ≥3 ratios, respectively indicating Th2 polarization of immune responses. The combination of VP6S + NSP4 proteins emulsified in aluminum hydroxide adjuvant might present a dual universal, efficient and cost-effective candidate vaccine against RV infection.


Asunto(s)
Nanosferas , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Animales , Anticuerpos Antivirales , Antígenos Virales , Proteínas de la Cápside/genética , Ratones , Ratones Endogámicos BALB C , Infecciones por Rotavirus/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA