Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 16, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183010

RESUMEN

Studying the effects of the microbiome on the development of different types of cancer has recently received increasing research attention. In this context, the microbial content of organs of the gastrointestinal tract has been proposed to play a potential role in the development of pancreatic cancer (PC). Proposed mechanisms for the pathogenesis of PC include persistent inflammation caused by microbiota leading to an impairment of antitumor immune surveillance and altered cellular processes in the tumor microenvironment. The limited available diagnostic markers that can currently be used for screening suggest the importance of microbial composition as a non-invasive biomarker that can be used in clinical settings. Samples including saliva, stool, and blood can be analyzed by 16 s rRNA sequencing to determine the relative abundance of specific bacteria. Studies have shown the potentially beneficial effects of prebiotics, probiotics, antibiotics, fecal microbial transplantation, and bacteriophage therapy in altering microbial diversity, and subsequently improving treatment outcomes. In this review, we summarize the potential impact of the microbiome in the pathogenesis of PC, and the role these microorganisms might play as biomarkers in the diagnosis and determining the prognosis of patients. We also discuss novel treatment methods being used to minimize or prevent the progression of dysbiosis by modulating the microbial composition. Emerging evidence is supportive of applying these findings to improve current therapeutic strategies employed in the treatment of PC.


Asunto(s)
Microbiota , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Biomarcadores , Antibacterianos , Disbiosis/terapia , Microambiente Tumoral
2.
Sci Rep ; 13(1): 19421, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940672

RESUMEN

Cutaneous leishmaniasis (CL) is a very common parasitic infection in subtropical areas worldwide. Throughout decades, there have been challenges in vaccine design and vaccination against CL. The present study introduced novel T-cell-based vaccine candidates containing IFN-γ Inducing epitopic fragments from Leishmania major (L. major) glycoprotein 46 (gp46), cathepsin L-like and B-like proteases, histone H2A, glucose-regulated protein 78 (grp78) and stress-inducible protein 1 (STI-1). For this aim, top-ranked human leukocyte antigen (HLA)-specific, IFN-γ Inducing, antigenic, CD4+ and CD8+ binders were highlighted. Four vaccine candidates were generated using different spacers (AAY, GPGPG, GDGDG) and adjuvants (RS-09 peptide, human IFN-γ, a combination of both, Mycobacterium tuberculosis Resuscitation promoting factor E (RpfE)). Based on the immune simulation profile, those with RS-09 peptide (Leish-App) and RpfE (Leish-Rpf) elicited robust immune responses and their tertiary structure were further refined. Also, molecular docking of the selected vaccine models with the human toll-like receptor 4 showed proper interactions, particularly for Leish-App, for which molecular dynamics simulations showed a stable connection with TLR-4. Upon codon optimization, both models were finally ligated into the pET28a( +) vector. In conclusion, two potent multi-epitope vaccine candidates were designed against CL and evaluated using comprehensive in silico methods, while further wet experiments are, also, recommended.


Asunto(s)
Leishmaniasis Cutánea , Leishmaniasis Visceral , Vacunas , Humanos , Epítopos de Linfocito T , Leishmaniasis Visceral/parasitología , Simulación del Acoplamiento Molecular , Linfocitos T , Interferón gamma , Biología Computacional , Vacunas de Subunidad , Epítopos de Linfocito B
3.
Mol Cell Biochem ; 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37405534

RESUMEN

Pancreatic cancer (PC) has a very high mortality rate globally. Despite ongoing efforts, its prognosis has not improved significantly over the last two decades. Thus, further approaches for optimizing treatment are required. Various biological processes oscillate in a circadian rhythm and are regulated by an endogenous clock. The machinery controlling the circadian cycle is tightly coupled with the cell cycle and can interact with tumor suppressor genes/oncogenes; and can therefore potentially influence cancer progression. Understanding the detailed interactions may lead to the discovery of prognostic and diagnostic biomarkers and new potential targets for treatment. Here, we explain how the circadian system relates to the cell cycle, cancer, and tumor suppressor genes/oncogenes. Furthermore, we propose that circadian clock genes may be potential biomarkers for some cancers and review the current advances in the treatment of PC by targeting the circadian clock. Despite efforts to diagnose pancreatic cancer early, it still remains a cancer with poor prognosis and high mortality rates. While studies have shown the role of molecular clock disruption in tumor initiation, development, and therapy resistance, the role of circadian genes in pancreatic cancer pathogenesis is not yet fully understood and further studies are required to better understand the potential of circadian genes as biomarkers and therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA