Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 23, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635268

RESUMEN

Sickle cell disease (SCD) is a heritable disorder caused by ß-globin gene mutations. Induction of fetal γ-globin is an established therapeutic strategy. Recently, epigenetic modulators, including G9a inhibitors, have been proposed as therapeutic agents. However, the molecular mechanisms whereby these small molecules reactivate γ-globin remain unclear. Here we report the development of a highly selective and non-genotoxic G9a inhibitor, RK-701. RK-701 treatment induces fetal globin expression both in human erythroid cells and in mice. Using RK-701, we find that BGLT3 long non-coding RNA plays an essential role in γ-globin induction. RK-701 selectively upregulates BGLT3 by inhibiting the recruitment of two major γ-globin repressors in complex with G9a onto the BGLT3 gene locus through CHD4, a component of the NuRD complex. Remarkably, BGLT3 is indispensable for γ-globin induction by not only RK-701 but also hydroxyurea and other inducers. The universal role of BGLT3 in γ-globin induction suggests its importance in SCD treatment.


Asunto(s)
Anemia de Células Falciformes , ARN Largo no Codificante , Ratones , Humanos , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , gamma-Globinas/genética , Células Eritroides/metabolismo , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Expresión Génica , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo
2.
ACS Med Chem Lett ; 13(7): 1077-1082, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35859864

RESUMEN

Inhibition of histone deacetylase 6 (HDAC6) in the brain is a highly attractive therapeutic target for the treatment of neurodegenerative diseases. The low blood-brain barrier permeability of most known HDAC6 inhibitors, however, prevents their application as central nervous system (CNS) drugs. To overcome this problem, we designed and synthesized benzylpiperazine derivatives using a hybrid strategy of combining HDAC6 inhibitors and brain-penetrant histamine H1 receptor antagonists. Introducing the benzylpiperazine units to the cap region of hydroxamate-type HDAC6 inhibitors led us to identify isozyme-selective and CNS-penetrant HDAC6 inhibitor KH-259 (1) with the appropriate pharmacokinetic and safety properties. Intraperitoneal administration of KH-259 (10 mg/kg) had antidepressant activity and increased acetylated α-tubulin in the brain without promoting acetylated histone H3K9. These findings indicate that our hybrid strategy of combining HDAC6 inhibitors and histamine H1 receptor antagonists is an effective methodology for designing CNS-penetrant HDAC6 inhibitors.

3.
Adv Sci (Weinh) ; 6(2): 1801479, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30693189

RESUMEN

Clean operating margins in breast cancer surgery are important for preventing recurrence. However, the current methods for determining margins such as intraoperative frozen section analysis or imprint cytology are not satisfactory since they are time-consuming and cause a burden on the patient and on hospitals with a limited accuracy. A "click-to-sense" probe is developed based on the detection of acrolein, which is a substance released by oxidatively stressed cancer cells and can be visualized under fluorescence microscopy. Using live breast tissues resected from breast cancer patients, it is demonstrated that this method can quickly, selectively, and sensitively differentiate cancer lesion from normal breast gland or benign proliferative lesions. Since acrolein is accumulated in all types of cancers, this method could be used to quickly assess the surgical margins in other types of cancer.

4.
ACS Med Chem Lett ; 9(9): 884-888, 2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30258535

RESUMEN

We designed and synthesized a pyrilamine derivative 1 as a selective class I HDAC inhibitor that targets pyrilamine-sensitive proton-coupled organic cation antiporter (PYSOCA) at the blood-brain barrier (BBB). Introduction of pyrilamine moiety to benzamide type HDAC inhibitors kept selective class I HDAC inhibitory activity and increased BBB permeability. Our BBB transport study showed that compound 1 is a substrate of PYSOCA. Thus, our findings suggest that the hybrid method of HDAC inhibitor and substrate of PYSOCA such as pyrilamine is useful for development of HDAC inhibitors with increased BBB permeability.

5.
Artículo en Inglés | MEDLINE | ID: mdl-29685974

RESUMEN

SIRT2 is a member of the human sirtuin family of proteins and possesses NAD+-dependent lysine deacetylase/deacylase activity. SIRT2 has been implicated in carcinogenesis in various cancers including leukaemia and is considered an attractive target for cancer therapy. Here, we identified NPD11033, a selective small-molecule SIRT2 inhibitor, by a high-throughput screen using the RIKEN NPDepo chemical library. NPD11033 was largely inactive against other sirtuins and zinc-dependent deacetylases. Crystallographic analysis revealed a unique mode of action, in which NPD11033 creates a hydrophobic cavity behind the substrate-binding pocket after a conformational change of the Zn-binding small domain of SIRT2. Furthermore, it forms a hydrogen bond to the active site histidine residue. In addition, NPD11033 inhibited cell growth of human pancreatic cancer PANC-1 cells with a concomitant increase in the acetylation of eukaryotic translation initiation factor 5A, a physiological substrate of SIRT2. Importantly, NPD11033 failed to inhibit defatty-acylase activity of SIRT2, despite its potent inhibitory effect on its deacetylase activity. Thus, NPD11033 will serve as a useful tool for both developing novel anti-cancer agents and elucidating the role of SIRT2 in various cellular biological processes.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.


Asunto(s)
Dominio Catalítico , Proliferación Celular/efectos de los fármacos , Sirtuina 2/antagonistas & inhibidores , Acetilación/efectos de los fármacos , Humanos
6.
Genes Cells ; 19(3): 225-38, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24506453

RESUMEN

Meiosis comprises two consecutive nuclear divisions, meiosis I and II. Despite this unique progression through the cell cycle, little is known about the mechanisms controlling the sequential divisions. In this study, we carried out a genetic screen to identify factors that regulate the initiation of meiosis II in the fission yeast Schizosaccharomyces pombe. We identified mutants deficient in meiosis II progression and repeatedly isolated mutants defective in spo5, which encodes an RNA-binding protein. Using fluorescence microscopy to visualize YFP-tagged protein, we found that spo5 mutant cells precociously lost Cdc13, the major B-type cyclin in fission yeast, before meiosis II. Importantly, the defect in meiosis II was rescued by increasing CDK activity. In wild-type cells, cdc13 transcripts increased during meiosis II, but this increase in cdc13 expression was weaker in spo5 mutants. Thus, Spo5 is a novel regulator of meiosis II that controls the level of cdc13 expression and promotes de novo synthesis of Cdc13. We previously reported that inhibition of Cdc13 degradation is necessary to initiate meiosis II; together with the previous information, the current findings indicate that the dual control of Cdc13 by de novo synthesis and suppression of proteolysis ensures the progression of meiosis II.


Asunto(s)
Ciclina B/metabolismo , Meiosis , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ciclina B/genética , Mutación , Proteínas de Unión al ARN/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA