RESUMEN
Matrix complexity of fruit juices and their low antimony level requires sensitive, cost-effective instruments, time-consuming and error-prone sample pretreatment methods. Therefore, a flow-batch procedure (HG-FBA-AFS) was developed for the fast and sensitive determination of total inorganic Sb in grape juice samples by hydride generation atomic fluorescence spectrometry. The sample pretreatment, pre-reduction and stibine formation steps run through the mixing chamber. The HCl and NaBH4 concentrations, and carrier gas flowrate were optimized through a Box-Behnken design. The detection limit (LOD) was 20 ng L-1, intra and inter-day precision ranged in 3.0 - 3.5 %, and low errors within (- 2.4 to 6.6 %) for samples containing 1.23 - 4.58 µg L-1 total Sb. Both HG-FBA-AFS and reference method agreed at 95% confidence level. An 87 h-1 sample throughput, and a 1.15 mL total waste per determination attest that HG-FBA-AFS is a fast, and ecofriendly tool for determining Sb in grape juices.
Asunto(s)
Antimonio , Vitis , Antimonio/análisis , Jugos de Frutas y Vegetales/análisis , Espectrometría de Fluorescencia/métodos , Espectrofotometría AtómicaRESUMEN
Parabens are compounds used as chemical preservatives in cosmetics, drugs, and food. Some can cause adverse effects on human health. In this study, a square wave voltammetric method using a glassy carbon electrode was developed for simultaneous determination of methyl, ethyl, propyl, and butyl parabens in sweeteners. To overcome the strong overlap of voltammetric signals caused by calibrated and uncalibrated constituents, unfolded partial least squares with residual bilinearization (U-PLS/RBL) was used. The U-PLS/RBL calibration model was constructed and evaluated using a validation set obtained using a Taguchi design. Satisfactory and unbiased results were obtained with a linear response in the range of 0.78-4.48 µmol L-1 and recoveries from 82.64% to 121.77%. As far as the authors know, a voltammetric method that simultaneously determines four parabens in complex samples such as sweeteners without any previous pretreatment has not yet been reported in the literature.
Asunto(s)
Parabenos , Edulcorantes , Calibración , Electrodos , Humanos , Análisis de los Mínimos CuadradosRESUMEN
Diffusion dynamics of water and oil are observed in real-time using video images. Savitzky-Golay derivative filtering ensures accurate localization of the liquid front. System identification demonstrates that a fractional-order model with only two parameters may be used to describe the dynamics of the diffusion process. The method paves the way for video-based cellulose filter paper microfluidics and lateral flow assays, which are low cost and have broad diagnostic applications.
RESUMEN
In this paper, a flow-batch analysis (FBA) system, hydride generation (HG), and atomic fluorescence spectrometry (AFS) are coupled for the first time to develop a fast and sensitive FBA-HG-AFS method for automated inorganic antimony speciation in waters, whether from the sea, mineral water, tap water, or lakes. Unlike previous automated flow methods that use confluent fluids and complex devices, the main advantage of the proposed FBA-HG-AFS method is an innovative use of a simple laboratory made flow-batch chamber to simultaneously perform mixing, homogenization, reactions, antimony hydride formation, and gas-liquid separation. The FBA-HG-AFS method was optimized using two-level full factorial and Box-Behnken designs, and validated on the basis of real repeated measurements and analysis of variance, yielding a satisfactory working range (100-2000â¯ngâ¯L-1), precision (RSDâ¯=â¯4%), sensitivity, and limit of detection (6â¯ngâ¯L-1) for the water samples analyzed. Accuracy was evaluated by recovery tests and analysis of a standard reference material (SRM 1643e) of trace elements in water (NIST, USA), resulting in recovery rates of from 90 to 114%, and relative errorâ¯=â¯0.7%. The high sampling throughput (54 speciations h-1), together with low waste generation, low costs, low reagent and sample consumption make this FBA-HG-AFS method an interesting proposal for fast large-scale analysis in routine laboratoy according to the principles of green analytical chemistry.
RESUMEN
In this work, lemon and onion biomasses commonly found in street markets are for the first time used to develop a facile, fast and low-cost one-step microwave-assisted carbonization method for synthesis of highly fluorescent carbon dots (CDs). The structure and optical properties of CDs were investigated by TEM, XRD, XRF, UV-Vis, FTIR, and fluorescence spectroscopy. CDs displayed satisfactory optical proprieties, a high quantum yield of 23.6%, and excellent water solubility, and the particle size was 4.23-8.22â¯nm with an average diameter of 6.15â¯nm. An efficient fluorescent resonance energy transfer (FRET) between the CDs and riboflavin was achieved with CDs acting as donor and riboflavin as acceptor. A linear relationship between FRET and the riboflavin concentration from 0.10 to 3.0⯵g/mL was observed, allowing the development of an accurate and fast analytical method to determine this vitamin in multivitamin/mineral supplements. Despite the potential interferences in these supplements, CDs were selective for riboflavin under optimized conditions. A paired t-test at a 95% confidence level indicated no statistically significant difference between the proposed and the reference methods. Recovery test presented values ranged from 96.0% to 101.4%. The limit of detection and relative standard deviation were estimated at 1.0â¯ng/mL and <2.6% (nâ¯=â¯3), respectively. CDs were successfully synthesized in a domestic microwave oven (1450â¯W, 6â¯min), presenting satisfactory parameters when compared with results of other studies reported in the literature, suggesting that the proposed method is a potentially useful method for the synthesis of CDs and determination of riboflavin.
RESUMEN
The electrocatalytic oxidation of tartaric acid on a carbon paste electrode modified with cobalt (II)-phthalocyanine was demonstrated and applied to the development of a highly sensitive, simple, fast and inexpensive voltammetric sensor to determine tartaric acid. The electrochemical behavior of the modified electrode was investigated by cyclic and square wave voltammetry, and the effect of experimental variables, such as dispersion and loading of cobalt (II)-phthalocyanine, together with optimum conditions for sensing the analyte by square wave voltammetry were assessed. In addition, the absence of a significant memory effect combined with the ease of electrode preparation led to the development of a sensitive and direct method to determine tartaric acid in wines. Interferences from other low molecular weight organic acids commonly present in wines were circumvented by using a multiway calibration technique, successfully obtaining the second order advantage by modeling voltammetric data with unfolded partial least square with residual bilinearization (U-PLS/RBL). A linear response range between 10 and 100⯵molâ¯L-1 (râ¯=â¯0.9991), a relative prediction error of 4.55% and a recovery range from 96.41 to 102.43% were obtained. The proposed method is non-laborious, since it does not use sample pretreatment such as filtration, extraction, pre-concentration or cleanup procedures.
Asunto(s)
Técnicas Electroquímicas , Indoles/química , Compuestos Organometálicos/química , Tartratos/análisis , Vino/análisis , Calibración , Catálisis , Electrodos , Oxidación-ReducciónRESUMEN
Cumin is a plant of the Apiaceae family (umbelliferae) which has been used since ancient times as a medicinal plant and as a spice. The difference in the percentage of aromatic compounds in cumin obtained from different locations has led to differentiation of some species of cumin from other species. The quality and price of cumin vary according to the specie and may be an incentive for the adulteration of high value samples with low quality cultivars. An electronic nose simulates the human olfactory sense by using an array of sensors to distinguish complex smells. This makes it an alternative for the identification and classification of cumin species. The data, however, may have a complex structure, difficult to interpret. Given this, chemometric tools can be used to manipulate data with two-dimensional structure (sensor responses in time) obtained by using electronic nose sensors. In this study, an electronic nose based on eight metal oxide semiconductor sensors (MOS) and 2D-LDA (two-dimensional linear discriminant analysis), U-PLS-DA (Partial least square discriminant analysis applied to the unfolded data) and PARAFAC-LDA (Parallel factor analysis with linear discriminant analysis) algorithms were used in order to identify and classify different varieties of both cultivated and wild black caraway and cumin. The proposed methodology presented a correct classification rate of 87.1% for PARAFAC-LDA and 100% for 2D-LDA and U-PLS-DA, indicating a promising strategy for the classification different varieties of cumin, caraway and other seeds.
Asunto(s)
Carum/clasificación , Cuminum/clasificación , Nariz Electrónica , Semillas/clasificación , Análisis Discriminante , Análisis Factorial , Análisis de los Mínimos Cuadrados , Metales/química , Óxidos/químicaRESUMEN
Tryptamine, a biogenic amine, is an indole derivative with an electrophilic substituent at the C3 position of the pyrrole ring of the indole moiety. The electrochemical oxidation of tryptamine was investigated using glassy carbon electrode (GCE), and focusing on trace level determination in food products by square wave adsorptive stripping voltammetry (SWAdSV). The electrochemical responses of tryptamine were evaluated using differing voltammetric techniques over a wide pH range, a quasi-reversible electron-transfer to redox system represented by coupled peaks P1-P3, and an irreversible reaction for peak P2 were demonstrated. The proton and electron counts associated with the oxidation reactions were estimated. The nature of the mass transfer process was predominantly diffusion-limited for the oxidation process of P1, the most selective and sensitive analytical response (acetate buffer solution pH 5.3), being used for the development of SWAdSV method, under optimum conditions. The excellent response allowed the development of an electroanalytical method with a linear response range of from 4.7-54.5)×10(-)(8)molL(-1), low detection limit (0.8×10(-)(9)molL(-)(1)), and quantification limit (2.7×10(-9)molL(-1)), and acceptable levels of repeatability (3.6%), and reproducibility (3.8%). Tryptamine content was determined in bananas, tomatoes, cheese (mozzarella and gorgonzola), and cold meats (chicken sausage and pepperoni sausage), yielding recoveries above 90%, with excellent analytical performance using simple and low cost instrumentation.
Asunto(s)
Triptaminas/análisis , Adsorción , Carbono , Electrodos , Reproducibilidad de los ResultadosRESUMEN
Xylitol is a reduced sugar with anticariogenic properties used by insulin-dependent diabetics, and which has attracted great attention of the pharmaceutical, cosmetics, food and dental industries. The detection of xylitol in different matrices is generally based on separation techniques. Alternatively, in this paper, the application of a boron-doped diamond (BDD) electrode allied to differing voltammetric techniques is presented to study the electrochemical behavior of xylitol, and to develop an analytical methodology for its determination in mouthwash. Xylitol undergoes two oxidation steps in an irreversible diffusion-controlled process (D=5.05 × 10(-5)cm(2)s(-1)). Differential pulse voltammetry studies revealed that the oxidation mechanism for peaks P1 (3.4 ≤ pH ≤ 8.0), and P2 (6.0 ≤ pH ≤ 9.0) involves transfer of 1H(+)/1e(-), and 1e(-) alone, respectively. The oxidation process P1 is mediated by the (â¢)OH generated at the BDD hydrogen-terminated surface. The maximum peak current was obtained at a pH of 7.0, and the electroanalytical method developed, (employing square wave voltammetry) yielded low detection (1.3 × 10(-6) mol L(-1)), and quantification (4.5 × 10(-6) mol L(-1)) limits, associated with good levels of repeatability (4.7%), and reproducibility (5.3%); thus demonstrating the viability of the methodology for detection of xylitol in biological samples containing low concentrations.
Asunto(s)
Boro/química , Diamante/química , Técnicas Electroquímicas/instrumentación , Electrodos , Xilitol/análisis , Concentración de Iones de Hidrógeno , Oxidación-ReducciónRESUMEN
Ricin, Ricinus communis agglutinin 60 - RCA 60, is a deadly phytotoxic protein which inhibits ribosomes (class II), and there is no known effective antidote in living organisms. Ricin is composed of two polypeptide chains, A and B, linked covalently by a single disulfide bond. The analytical methods for the detection of RCA 60 are commonly laborious, expensive, require skilled labor, and involve sophisticated equipment. Aimed at the development of electroanalytical methods for RCA 60 detection, here we studied the electrochemical oxidation of RCA 60 on a glassy carbon (GC) electrode over a wide pH range, using cyclic voltammetry, differential pulse voltammetry (DPV) and square wave voltammetry (SWV). Two quasi-reversible electrochemical RCA 60 oxidation peaks were identified on the GC electrode by SWV. For values of 2.2 ≤ pH ≤ 10.2, DPV studies revealed that the peak potentials, EP1 and EP2, display a linear dependence with pH and the reaction mechanism involves the transfer of 2Hâº/2eâ» (peak 1) and 1Hâº/1eâ» (peak 2). The first and second RCA 60 oxidation steps may correspond to the oxidation of cysteine and tyrosine-tryptophan residues, respectively. The oxidation product of the second RCA 60 oxidation step appears at 7.0 ≤ pH ≤ 11.8. For pH ≥ 10.2, both processes are pH independent, resulting in a pKa of ca. 10.2. A third RCA 60 oxidation peak only appears at acidic pH. RCA 60 samples extracted from different castor seed cultivars showed similar electrochemical behavior, enabling the implementation of an analytical voltammetric method.
Asunto(s)
Carbono/química , Técnicas Electroquímicas/métodos , Vidrio/química , Ricina/análisis , Secuencia de Aminoácidos , Electrodos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Ricina/genéticaRESUMEN
This paper proposes a NIR spectrometric method for screening analysis of liquefied petroleum gas (LPG) samples. The proposed method is aimed at discriminating samples with low and high propane content, which can be useful for the adjustment of burn settings in industrial applications. A gas flow system was developed to introduce the LPG sample into a NIR flow cell at constant pressure. In addition, a gas chromatographer was employed to determine the propane content of the sample for reference purposes. The results of a principal component analysis, as well as a classification study using SIMCA (soft independent modeling of class analogies), revealed that the samples can be successfully discriminated with respect to propane content by using the NIR spectrum in the range 8100-8800 cm(-1). In addition, by using SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm), it was found that perfect discrimination can also be achieved by using only two wavenumbers (8215 and 8324 cm(-1)). This finding may be of value for the design of a dedicated, low-cost instrument for routine analyses.
RESUMEN
In this study, a micro-flow-batch analyzer (µFBA) with solenoid micro-pumps for the photometric determination of iodate in table salt is described. The method is based on the reaction of iodate with iodide to form molecular iodine followed by the reaction with N,N-diethyl-p-phenylenediamine (DPD). The analytical signal was measured at 520 nm using a green LED integrated into the µFBA built in the urethane-acrylate resin. The analytical curve for iodate was linear in the range of 0.01-10.0 mg L(-1) with a correlation coefficient of 0.997. The limit of detection and relative standard deviation were estimated at 0.004 mg L(-1) and<1.5% (n=3), respectively. The accuracy was assessed through recovery test (97.6-103.5%) and independent analysis by a conventional titrimetric method. Comparing this technique with the conventional method, no statistically significant differences were observed when applying the paired t-test at a 95% confidence level. The proposed microsystem using solenoid micro-pumps presented satisfactory robustness and high sampling rate (170 h(-1)), with a low reagents consumption and a low cost to build the device. The proposed microsystem is a new alternative for automatic determination of iodate in table salt, comparing satisfactory to the recently flow system.
Asunto(s)
Análisis de los Alimentos/instrumentación , Yodatos/análisis , Microtecnología/instrumentación , Fotometría/instrumentación , Cloruro de Sodio Dietético/análisisRESUMEN
A method for the determination of phosphorus in mineralized biodiesel using a micro-flow-batch analyzer (µFBA) with solenoid micro-pumps was proposed. The samples were mineralized using an ashing procedure at 550 °C followed by dissolution of the residue. The determination of phosphorus was performed by employing the well-known molybdenum blue method. The measures of the absorbance were performed at 850 nm using an InfraRed LED integrated into the µFBA. Comparing with the reference method, no statistically significant differences were observed when applying the paired t-test at a 95% confidence level. Recovery study shows results between 97.9% and 105.8%. The proposed microsystem using solenoid micro-pumps presented satisfactory robustness and high sampling rate (190 h(-1)), with satisfactory reproducibility (relative standard deviation <4.5%, n=3), low reagents consumption (32 µL per analysis) and cost to build the device. Moreover, µFBA presents limit of detection (0.014 mg Kg(-1)), precision and accuracy compatible with the biodiesel regulations that establish a maximum concentration of 10 mg Kg(-1) (Brazil, USA, EU), suggesting that it is a good alternative for the determination of phosphorus in biodiesel.
Asunto(s)
Biocombustibles/análisis , Análisis de Inyección de Flujo/métodos , Fósforo/análisis , Calor , Concentración de Iones de Hidrógeno , Límite de Detección , Molibdeno/química , Reproducibilidad de los Resultados , Espectrofotometría InfrarrojaRESUMEN
This paper investigates the use of UV-vis, near infrared (NIR) and synchronous fluorescence (SF) spectrometries coupled with multivariate classification methods to discriminate biodiesel samples with respect to the base oil employed in their production. More specifically, the present work extends previous studies by investigating the discrimination of corn-based biodiesel from two other biodiesel types (sunflower and soybean). Two classification methods are compared, namely full-spectrum SIMCA (soft independent modelling of class analogies) and SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm). Regardless of the spectrometric technique employed, full-spectrum SIMCA did not provide an appropriate discrimination of the three biodiesel types. In contrast, all samples were correctly classified on the basis of a reduced number of wavelengths selected by SPA-LDA. It can be concluded that UV-vis, NIR and SF spectrometries can be successfully employed to discriminate corn-based biodiesel from the two other biodiesel types, but wavelength selection by SPA-LDA is key to the proper separation of the classes.
Asunto(s)
Algoritmos , Biocombustibles/análisis , Análisis Espectral/métodos , Análisis Discriminante , Colorantes Fluorescentes/química , Modelos Estadísticos , Control de Calidad , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja Corta , Análisis Espectral/instrumentaciónRESUMEN
Microcystins (MCs) are cyclic hepatotoxic heptapeptides produced by certain strains of freshwater cyanobacteria toxic for humans and animals. The electrochemical behaviour of microcystin-LR (MC-LR) at a glassy carbon electrode (GCE) was investigated using cyclic voltammetry (CV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV). The oxidation of MC-LR is a diffusion-controlled irreversible and pH-independent process that occurs with the transfer of only one electron and does not involve the formation of any electroactive oxidation product. Upon incubation in different pH electrolytes, homogeneous degradation of MC-LR in solution was electrochemically detected by the appearance of a new oxidation peak at a lower potential. The electrochemical behaviour of chemically degraded MC-LR is an irreversible, pH-dependent process, and involves the formation of two redox products that undergo reversible oxidation. The formation of degradation products of MC-LR was confirmed by HPLC with UV detection at room temperature. Experiments were also carried out in solutions containing constituent MC-LR amino acids, which enabled the understanding of the MC-LR electron transfer reaction and degradation. An oxidation mechanism for MC-LR is proposed.
Asunto(s)
Técnicas Electroquímicas , Microcistinas/química , Cromatografía Líquida de Alta Presión , Electrodos , Concentración de Iones de Hidrógeno , Toxinas Marinas , Oxidación-ReducciónRESUMEN
Both turbidimetric and photometric determinations of total tannins in samples of green and black tea, using a micro-flow-batch analyzer (µFBA) were studied. The miniaturized system was formed using photocurable urethane-acrylate resin and ultraviolet lithography technique. The turbidimetric method was based on the precipitation reaction of Cu (II) with tannins in acetate medium at a pH of 4.5. The photometric method was based on the complexation reaction of tannins with ferrous tartrate. The turbidimetric µFBA was able to test 200 samples per hour. The photometric µFBA allowed 300 analyses per hour, generating 136µL of residue per analysis. The paired t test, at a 95% confidence level, showed no statistically significant differences between results obtained by both methods and the reference method. The urethane-acrylate µFBA maintained satisfactory physical and chemical properties, and represents an improvement over conventional flow-batch analyzer.
Asunto(s)
Taninos/análisis , Té/química , Acetatos/química , Resinas Acrílicas/química , Automatización de Laboratorios , Cobre/química , Concentración de Iones de Hidrógeno , Nefelometría y Turbidimetría , Procesos Fotoquímicos , Fotometría , Poliuretanos/química , Rayos UltravioletaRESUMEN
This study introduces the first micro-flow-batch analyzer (µFBA). A simple, low-cost, deep urethane-acrylate photo-resist ultraviolet-lithographic technique was used in its development. Details of the microfabrication process are presented including; the use of two superimposed photo-masks to improve the micro-channel and stop chamber border definition, as well as integration of an LED/phototransistor photometric pair, while using an open nylon-thread (fishing line) micro-mixing system for solutions homogenization. The system was used for photometric determination of Fe(II) in oral solution iron supplements employing the well-known 1,10-phenanthroline method, with instantaneously prepared micro-chamber calibration solutions. All analytical processes were accomplished by simply changing the timing parameters in the control software. It must be emphasized here that there was no outside preparation of the standard calibration solutions; the mixing was all done in-chamber/in-line, with all solutions maintained flowing while being proportioned for the measurement processes. The µFBA results were acceptable when compared to the reference method, and comparable to normal flow-batch systems. It was possible both to project and build a low-cost probe with high sample throughput (about 120 h(-1)), low relative standard deviations (about 1.1%), and reduced reagent consumption (30 times less than the reference method). The µFBA system based on urethane-acrylate presented satisfactory physical and chemical properties while keeping the flexibility, versatility, robustness, and multi-task characteristics of normal flow-batch analyzers. The µFBA system contributes to the advance of micro-analytical instrumentation, while realizing the basic principles of "Green Chemistry".
RESUMEN
In this study, a novel, simple, and efficient spectrofluorimetric method to determine directly and simultaneously five phenolic compounds (hydroquinone, resorcinol, phenol, m-cresol and p-cresol) in air samples is presented. For this purpose, variable selection by the successive projections algorithm (SPA) is used in order to obtain simple multiple linear regression (MLR) models based on a small subset of wavelengths. For comparison, partial least square (PLS) regression is also employed in full-spectrum. The concentrations of the calibration matrix ranged from 0.02 to 0.2 mg L(-1) for hydroquinone, from 0.05 to 0.6 mg L(-1) for resorcinol, and from 0.05 to 0.4 mg L(-1) for phenol, m-cresol and p-cresol; incidentally, such ranges are in accordance with the Argentinean environmental legislation. To verify the accuracy of the proposed method a recovery study on real air samples of smoking environment was carried out with satisfactory results (94-104%). The advantage of the proposed method is that it requires only spectrofluorimetric measurements of samples and chemometric modeling for simultaneous determination of five phenols. With it, air is simply sampled and no pre-treatment sample is needed (i.e., separation steps and derivatization reagents are avoided) that means a great saving of time.
Asunto(s)
Cresoles/análisis , Hidroquinonas/análisis , Fenol/análisis , Resorcinoles/análisis , Aire , Contaminantes Atmosféricos , Calibración , Humanos , Análisis de los Mínimos Cuadrados , Análisis de Regresión , Humo/análisis , Fumar , Espectrometría de Fluorescencia/métodosRESUMEN
This study presents an automatic analysis system that does not require the use of standard solutions. The system uses an electrochemical flow cell for in line generation of the standards, and operates under the standard addition technique. The versatility of this system was demonstrated by the development of a one key touch fully automatic method for the determination of total available chlorine in real samples. The extremely simple, accurate and inexpensive method was based simply on the biamperometric monitoring of the well known redox reaction of chlorine with iodide ions in a flow-batch system, where the produced iodine (triiodide ions) generates an electrical current proportional to the chlorine concentration in the sample. The flow-batch parameters were optimized to maximize the sensitivity without losses on the precision of the analysis. An excellent linear dependence between the biamperometric signal and the chlorine concentration for the standard additions and a good agreement between the proposed approach and a reference method were obtained. The method was successfully applied to determine chlorine in several different bleach and chlorinated water samples (r=0.9995, LOD=8.261 x 10(-7) mol L(-1)) and could be easily extended to other oxidants and samples. Comparison to a reference method and recoveries close to 100% demonstrated the reliability of the proposed method. In addition, low residue disposal and reagent consumption, allied with high accuracy and precision, make it very promising for routine applications.
Asunto(s)
Cloro/análisis , Análisis de Inyección de Flujo/métodos , Automatización , Electroquímica , Análisis de Inyección de Flujo/normas , Estándares de Referencia , SolucionesRESUMEN
An enzymatic flow-batch system with spectrophotometric detection was developed for simultaneous determination of levodopa [(S)-2 amino-3-(3,4-dihydroxyphenyl)propionic acid] and carbidopa [(S)-3-(3,4-dihydroxyphenyl)-2-hydrazino-2-methylpropionic acid] in pharmaceutical preparations. The data were analysed by univariate method, partial least squares (PLS) and a novel variable selection for multiple lineal regression (MLR), the successive projections algorithm (SPA). The enzyme polyphenol oxidase (PPO; EC 1.14.18.1) obtained from Ipomoea batatas (L.) Lam. was used to oxidize both analytes to their respective dopaquinones, which presented a strong absorption between 295 and 540 nm. The statistical parameters (RMSE and correlation coefficient) calculated after the PLS in the spectral region between 295 and 540 nm and MLR-SPA application were appropriate for levodopa and carbidopa. A comparative study of univariate, PLS, in different ranges, and MLR-SPA chemometrics models, was carried out by applying the elliptical joint confidence region (EJCR) test. The results were satisfactory for PLS in the spectral region between 295 and 540 nm and for MLR-SPA. Tablets of commercial samples were analysed and the results obtained are in close agreement with both, spectrophotometric and HPLC pharmacopeia methods. The sample throughput was 18 h(-1).