Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 10(3)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808668

RESUMEN

Chili pepper (Capsicum spp.) is an important crop, as well as a model for fruit development studies and domestication. Here, we performed a time-course experiment to estimate standardized gene expression profiles with respect to fruit development for six domesticated and four wild chili pepper ancestors. We sampled the transcriptomes every 10 days from flowering to fruit maturity, and found that the mean standardized expression profiles for domesticated and wild accessions significantly differed. The mean standardized expression was higher and peaked earlier for domesticated vs. wild genotypes, particularly for genes involved in the cell cycle that ultimately control fruit size. We postulate that these gene expression changes are driven by selection pressures during domestication and show a robust network of cell cycle genes with a time shift in expression, which explains some of the differences between domesticated and wild phenotypes.

2.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668082

RESUMEN

The MYB transcription factor family is very large and functionally diverse in plants, however, only a few members of this family have been reported and characterized in chili pepper (Capsicum spp.). In the present study, we performed genome-wide analyses of the MYB family in Capsicum annuum, including phylogenetic relationships, conserved domain, gene structure organization, motif protein arrangement, chromosome distribution, chemical properties predictions, RNA-seq expression, and RT-qPCR expression assays. A total of 235 non-redundant MYB proteins were identified from C. annuum, including R2R3-MYB, 3R-MYB, atypical MYB, and MYB-related subclasses. The sequence analysis of CaMYBs compared with other plant MYB proteins revealed gene conservation, but also potential specialized genes. Tissue-specific expression profiles showed that CaMYB genes were differentially expressed, suggesting that they are functionally divergent. Furthermore, the integration of our data allowed us to propose strong CaMYBs candidates to be regulating phenylpropanoid, lignin, capsaicinoid, carotenoid, and vitamin C biosynthesis, providing new insights into the role of MYB transcription factors in secondary metabolism. This study adds valuable knowledge about the functions of CaMYB genes in various processes in the Capsicum genus.


Asunto(s)
Capsicum/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Familia de Multigenes , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas Proto-Oncogénicas c-myb/genética
3.
Plant Physiol ; 174(3): 1359-1370, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28483879

RESUMEN

Capsaicinoids are responsible for the hot taste of chili peppers. They are restricted to the genus Capsicum and are synthesized by the acylation of the aromatic compound vanillylamine (derived from the phenylpropanoid pathway) with a branched-chain fatty acid by the catalysis of the putative enzyme capsaicinoid synthase. R2R3-MYB transcription factors have been reported in different species of plants as regulators of structural genes of the phenylpropanoid pathway; therefore, we hypothesized that MYB genes might be involved in the regulation of the biosynthesis of pungent compounds. In this study, an R2R3-MYB transcription factor gene, designated CaMYB31, was isolated and characterized in Capsicum annuum 'Tampiqueño 74'. Bioinformatic analysis suggested that CaMYB31 could be involved in secondary metabolism, stress and plant hormone responses, and development. CaMYB31 expression analysis from placental tissue of pungent and nonpungent chili pepper fruits showed a positive correlation with the structural genes Ca4H, Comt, Kas, pAmt, and AT3 expression and also with the content of capsaicin and dihydrocapsacin during fruit development. However, CaMYB31 also was expressed in vegetative tissues (leaves, roots, and stems). Moreover, CaMYB31 silencing significantly reduced the expression of capsaicinoid biosynthetic genes and the capsaicinoid content. Additionally, CaMYB31 expression was affected by the plant hormones indoleacetic acid, jasmonic acid, salicylic acid, and gibberellic acid or by wounding, temperature, and light, factors known to affect the production of capsaicinoids. These findings indicate that CaMYB31 is indeed involved in the regulation of structural genes of the capsaicinoid biosynthetic pathway.


Asunto(s)
Vías Biosintéticas , Capsaicina/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Bases , Vías Biosintéticas/efectos de los fármacos , Capsaicina/análogos & derivados , Frutas/efectos de los fármacos , Frutas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen , Genes de Plantas , Luz , Especificidad de Órganos/genética , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/química , Temperatura , Factores de Transcripción/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...