RESUMEN
Targeting the lysine deacetylase activity of class I histone deacetylases (HDACs) is potentially beneficial for the treatment of several diseases including human immunodeficiency virus (HIV) infection, Alzheimer's disease, and various cancers. It is therefore important to understand the function and mechanism of action of these enzymes. Class I HDACs act as catalytic components of seven large, multiprotein corepressor complexes. Different HDAC corepressor complexes have specific, nonredundant roles in the cell. It is likely that their specific functions are at least partly influenced by the substrate specificity of the complexes. To address this, we developed chemical tools to probe the specificity of HDAC complexes. We assessed a library of acetyl-lysine-containing substrate peptides and hydroxamic acid-containing inhibitor peptides against the full range of class I HDAC corepressor complexes. The results suggest that site-specific HDAC corepressor complex activity is driven in part by the recognition of the primary amino acid sequence surrounding a particular lysine position in the histone tail.
Asunto(s)
Ácidos Hidroxámicos , Biblioteca de Péptidos , Proteínas Co-Represoras/metabolismo , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxámicos/química , Lisina , Péptidos/químicaRESUMEN
RAS is a major anticancer drug target which requires membrane localization to activate downstream signal transduction. The direct inhibition of RAS has proven to be challenging. Here, we present a novel strategy for targeting RAS by stabilizing its interaction with the prenyl-binding protein PDE6D and disrupting its localization. Using rationally designed RAS point mutations, we were able to stabilize the RAS:PDE6D complex by increasing the affinity of RAS for PDE6D, which resulted in the redirection of RAS to the cytoplasm and the primary cilium and inhibition of oncogenic RAS/ERK signaling. We developed an SPR fragment screening and identified fragments that bind at the KRAS:PDE6D interface, as shown through cocrystal structures. Finally, we show that the stoichiometric ratios of KRAS:PDE6D vary in different cell lines, suggesting that the impact of this strategy might be cell-type-dependent. This study forms the foundation from which a potential anticancer small-molecule RAS:PDE6D complex stabilizer could be developed.
Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/análisis , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Proteínas Proto-Oncogénicas p21(ras)/metabolismoRESUMEN
Phosphorylation of MDM2 by ATM upon DNA damage is an important mechanism for deregulating MDM2, thereby leading to p53 activation. ATM phosphorylates multiple residues near the RING domain of MDM2, but the underlying molecular basis for deregulation remains elusive. Here we show that Ser429 phosphorylation selectively enhances the ubiquitin ligase activity of MDM2 homodimer but not MDM2-MDMX heterodimer. A crystal structure of phospho-Ser429 (pS429)-MDM2 bound to E2-ubiquitin reveals a unique 310-helical feature present in MDM2 homodimer that allows pS429 to stabilize the closed E2-ubiquitin conformation and thereby enhancing ubiquitin transfer. In cells Ser429 phosphorylation increases MDM2 autoubiquitination and degradation upon DNA damage, whereas S429A substitution protects MDM2 from auto-degradation. Our results demonstrate that Ser429 phosphorylation serves as a switch to boost the activity of MDM2 homodimer and promote its self-destruction to enable rapid p53 stabilization and resolve a long-standing controversy surrounding MDM2 auto-degradation in response to DNA damage.
Asunto(s)
Daño del ADN , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Dominios RING Finger , Secuencia de Aminoácidos , Línea Celular Tumoral , Humanos , Modelos Moleculares , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Multimerización de Proteína , Relación Estructura-Actividad , Ubiquitina/metabolismoRESUMEN
Syntheses of Fmoc amino acids having zinc-binding groups were prepared and incorporated into substrate inhibitor H3K27 peptides using Fmoc/tBu solid-phase peptide synthesis (SPPS). Peptide 11, prepared using Fmoc-Asu(NHOtBu)-OH, is a potent inhibitor (IC50 = 390 nM) of the core NuRD corepressor complex (HDAC1-MTA1-RBBP4). The Fmoc amino acids have the potential to facilitate the rapid preparation of substrate peptidomimetic inhibitor (SPI) libraries in the search for selective HDAC inhibitors.
Asunto(s)
Aminoácidos/química , Fluorenos/química , Inhibidores de Histona Desacetilasas/síntesis química , Peptidomiméticos/síntesis química , Zinc/química , Quelantes/química , Complejos de Coordinación/química , Níquel/química , Técnicas de Síntesis en Fase Sólida , EstereoisomerismoRESUMEN
Perylene bisimides (PBIs) self-assemble in solution. The solubility of the PBIs is commonly changed through the choice of substituents at the imide positions. It is generally assumed this substitution does not affect the electronic properties of the PBI, and that the properties of the self-assembled aggregate are essentially that of the isolated molecule. However, substituents do affect the self-assembly, resulting in potentially different packing in the formed aggregates. Here, we show that the photoconductivity of films formed from a library of substituted PBIs varies strongly with the substituent and demonstrate that this is due to the different ways in which they pack. Our results open the possibility for tuning the optoelectronic properties of self-assembled PBIs by controlling the aggregate structure through careful choice of substituent, as demonstrated by us here optimising the photoconductivity of PBI films in this way.
RESUMEN
Unprotected linear peptides containing N-terminal cysteines and another cysteine residue can be simultaneously cyclized and derivatized using 2,2-disubstituted cyclopentenediones. High yields of cyclic peptide conjugates may be obtained in short reaction times using only a slight excess of the cyclopentenedione moiety under TEMPO catalysis and in the presence of LiCl.