RESUMEN
Vitamin D, an essential micronutrient crucial for skeletal integrity and various non-skeletal physiological functions, exhibits limited bioavailability and stability in vivo. This study is focused on the development of polyethylene glycol (PEG)-grafted phospholipid micellar nanostructures co-encapsulating vitamin D3 and conjugated with alendronic acid, aimed at active bone targeting. Furthermore, these nanostructures are rendered optically traceable in the UV-visible region of the electromagnetic spectrum via the simultaneous encapsulation of vitamin D3 with carbon dots, a newly emerging class of fluorescents, biocompatible nanoparticles characterized by their resistance to photobleaching and environmental friendliness, which hold promise for future in vitro bioimaging studies. A systematic investigation is conducted to optimize experimental parameters for the preparation of micellar nanostructures with an average hydrodynamic diameter below 200 nm, ensuring colloidal stability in physiological media while preserving the optical luminescent properties of the encapsulated carbon dots. Comprehensive chemical-physical characterization of these micellar nanostructures is performed employing optical and morphological techniques. Furthermore, their binding affinity for the principal inorganic constituent of bone tissue is assessed through a binding assay with hydroxyapatite nanoparticles, indicating significant potential for active bone-targeting. These formulated nanostructures hold promise for novel therapeutic interventions to address skeletal-related complications in cancer affected patients in the future.
Asunto(s)
Alendronato , Huesos , Colecalciferol , Micelas , Nanoestructuras , Colecalciferol/química , Nanoestructuras/química , Huesos/efectos de los fármacos , Huesos/metabolismo , Alendronato/química , Polietilenglicoles/química , Humanos , Sistemas de Liberación de Medicamentos , Luminiscencia , Nanopartículas/química , Portadores de Fármacos/química , Puntos Cuánticos/químicaRESUMEN
The production of paediatric pharmaceutical forms represents a unique challenge within the pharmaceutical industry. The primary goal of these formulations is to ensure therapeutic efficacy, safety, and tolerability in paediatric patients, who have specific physiological needs and characteristics. In recent years, there has been a significant increase in attention towards this area, driven by the need to improve drug administration to children and ensure optimal and specific treatments. Technological innovation has played a crucial role in meeting these requirements, opening new frontiers in the design and production of paediatric pharmaceutical forms. In particular, three emerging technologies have garnered considerable interest and attention within the scientific and industrial community: 3D printing, prilling/vibration, and microfluidics. These technologies offer advanced approaches for the design, production, and customization of paediatric pharmaceutical forms, allowing for more precise dosage modulation, improved solubility, and greater drug acceptability. In this review, we delve into these cutting-edge technologies and their impact on the production of paediatric pharmaceutical forms. We analyse their potential, associated challenges, and recent developments, providing a comprehensive overview of the opportunities that these innovative methodologies offer to the pharmaceutical sector. We examine different pharmaceutical forms generated using these techniques, evaluating their advantages and disadvantages.
Asunto(s)
Microfluídica , Impresión Tridimensional , Humanos , Niño , Microfluídica/métodos , Formas de Dosificación , Tecnología Farmacéutica/métodos , Pediatría/métodos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/administración & dosificación , Composición de Medicamentos/métodos , Química Farmacéutica/métodos , SolubilidadRESUMEN
Cataract surgery interventions are constantly increasing, particularly among adult and elderly patients. This type of surgery can lead to inflammatory states of the ocular anterior segment (AS), usually healed via postoperative treatment with dexamethasone (DEX)-containing eye drops. The application of eye drops is challenging due to the high number of daily administrations. In this study, mucoadhesive nanoparticles (NPs) were formulated to improve the residence time of DEX on the corneal mucosa, enhancing the drug's solubility and bioavailability. The NPs were generated using an ionotropic gelation technique, exploiting the interaction between the cationic group of chitosan (CS) and the anionic group of sulfobutylether-ß-cyclodextrin (SBE-ß-CD). The formation of the inclusion complex and its stoichiometry were studied through phase solubility studies, Job's plot method, and Bi-directional transport studies on MDCKII-MDR1. The obtained NPs showed good chemical and physical characteristics suitable for drug loading and subsequent testing on animal mucosa. The DEX-loaded CS/SBE-ß-CD NPs exhibited a prolonged residence time on animal mucosa and demonstrated enhanced drug permeability through the corneal membrane, showing a sustained release profile. The developed NPs posed no irritation or toxicity concerns upon local administration, making them an optimal and innovative drug delivery system for inflammatory AS diseases treatment.
RESUMEN
Optimizing current therapies is among next steps in metastatic melanoma (MM) treatment landscape. The innovation of this study is the design of production process by microfluidics of cell membrane (CM)-modified nanoparticles (NPs), as an emerging biomimetic platform that allows for reduced immune clearance, long blood circulation time and improved specific tumor targeting. To achieve melanoma selectivity, direct membrane fusion between synthetic liposomes and CMs extracted from MM cell line was performed by microfluidic sonication approach, then the hybrid liposomes were loaded with cobimetinib (Cob) or lenvatinib (Lenva) targeting agents and challenged against MM cell lines and liver cancer cell line to evaluate homotypic targeting and antitumor efficacy. Characterization studies demonstrated the effective fusion of CM with liposome and the high encapsulation efficiency of both drugs, showing the proficiency of microfluidic-based production. By studying the targeting of melanoma cells by hybrid liposomes versus liposomes, we found that both NPs entered cells through endocytosis, whereas the former showed higher selectivity for MM cells from which CM was extracted, with 8-fold higher cellular uptake than liposomes. Hybrid liposome formulation of Cob and Lenva reduced melanoma cells viability to a greater extent than liposomes and free drug and, notably, showed negligible toxicity as demonstrated by bona fide haemolysis test. The CM-modified NPs presented here have the potential to broaden the choice of therapeutic options in MM treatment.
Asunto(s)
Liposomas , Melanoma , Humanos , Melanoma/tratamiento farmacológico , Microfluídica , Biomimética , Sistemas de Liberación de Medicamentos , Línea Celular TumoralRESUMEN
The aim of this work was to develop a new class of deep eutectic solvent (DES) composed of a complexation agent, namely hydroxy-propyl-ß-cyclodextrin (HPßCD), to exploit a synergic solubilization-enhancing approach. For this purpose, cyclodextrin-based supramolecular DES (CycloDES) were physical-chemical characterized and loaded with three different BCS class II model drugs, specifically Cannabidiol, Indomethacin, and Dexamethasone, evaluating the influence of different factors on the observed solubility and permeation compared with the only HPßCD/drug complexation. Hence, CycloDESs were presented as a possible vehicle for drugs and represent a novel potential approach for solving BCS class II and IV solubility issues, demonstrating at least a 100-fold improvement in the investigated drug solubilities. Furthermore, CycloDESs demonstrated a significantly improved resistance to dilution preserving a high percentage of drug in solution (i.e. 93% for Indomethacin) when water is added to the DES if compared with a glucose-choline chloride DES, used as a standard. This evidence guarantees the solubility-enhancing effect useful for the delivery of BCS class II and IV drugs converting solid raw material to advantageous liquid vehicles bypassing the rate-determining dissolution step.
Asunto(s)
Ciclodextrinas , Preparaciones Farmacéuticas/química , Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Disolventes Eutécticos Profundos , Solubilidad , IndometacinaRESUMEN
The aim of this work is the development and production by Direct Powder Extrusion (DPE) 3D printing technique of novel oral mucoadhesive films delivering Clobetasol propionate (CBS), useful in paediatric treatment of Oral Lichen Planus (OLP), a rare chronic disease. The DPE 3D printing of these dosage forms can allow the reduction of frequency regimen, the therapy personalization, and reduction of oral cavity administration discomfort. To obtain suitable mucoadhesive films, different polymeric materials, namely hydroxypropylmethylcellulose or polyethylene oxide blended with chitosan (CS), were tested and hydroxypropyl-ß-cyclodextrin was added to increase the CBS solubility. The formulations were tested in terms of mechanical, physico-chemical, and in vitro biopharmaceutical properties. The film showed a tenacious structure, with drug chemical-physical characteristics enhancement due to its partial amorphization during the printing stage and owing to cyclodextrins multicomponent complex formation. The presence of CS enhanced the mucoadhesive properties leading to a significant increase of drug exposure time on the mucosa. Finally, the printed films permeation and retention studies through porcine mucosae showed a marked retention of the drug inside the epithelium, avoiding drug systemic absorption. Therefore, DPE-printed films could represent a suitable technique for the preparation of mucoadhesive film potentially usable for paediatric therapy including OLP.
Asunto(s)
Clobetasol , Sistemas de Liberación de Medicamentos , Animales , Porcinos , Sistemas de Liberación de Medicamentos/métodos , Polvos , Preparaciones Farmacéuticas , Impresión Tridimensional , Liberación de FármacosRESUMEN
Nanomedicines have made remarkable advances in recent years, addressing the limitations of traditional therapy and treatment methods. Due to their improved drug solubility, stability, precise delivery, and ability to target specific sites, nanoparticle-based drug delivery systems have emerged as highly promising solutions. The successful interaction of nanoparticles with biological systems, on the other hand, is dependent on their intentional surface engineering. As a result, biomimetic nanoparticles have been developed as novel drug carriers. In-depth knowledge of various biomimetic nanoparticles, their applications, and the methods used for their formulation, with emphasis on the microfluidic production technique, is provided in this review. Microfluidics has emerged as one of the most promising approaches for precise control, high reproducibility, scalability, waste reduction, and faster production times in the preparation of biomimetic nanoparticles. Significant advancements in personalized medicine can be achieved by harnessing the benefits of biomimetic nanoparticles and leveraging microfluidic technology, offering enhanced functionality and biocompatibility.
RESUMEN
The development of efficient treatments for tumors affecting the central nervous system (CNS) remains an open challenge. Particularly, gliomas are the most malignant and lethal form of brain tumors in adults, causing death in patients just over 6 months after diagnosis without treatment. The current treatment protocol consists of surgery, followed using synthetic drugs and radiation. However, the efficacy of these protocols is associated with side effects, poor prognosis and with a median survival of fewer than two years. Recently, many studies were focused on applying plant-derived products to manage various diseases, including brain cancers. Quercetin is a bioactive compound derived from various fruits and vegetables (asparagus, apples, berries, cherries, onions and red leaf lettuce). Numerous in vivo and in vitro studies highlighted that quercetin through multitargeted molecular mechanisms (apoptosis, necrosis, anti-proliferative activity and suppression of tumor invasion and migration) effectively reduces the progression of tumor cells. This review aims to summarize current developments and recent advances of quercetin's anticancer potential in brain tumors. Since all reported studies demonstrating the anti-cancer potential of quercetin were conducted using adult models, it is suggested to expand further research in the field of paediatrics. This could offer new perspectives on brain cancer treatment for paediatric patients.
RESUMEN
The purpose of this study was to combine direct powder extrusion (DPE) 3D printing and fluid bed coating techniques to create a budesonide (BD) loaded solid oral formulations for the treatment of eosinophilic colitis (EC) in paediatric patients. The preferred medication for EC treatment is BD, which has drawbacks due to its poor water solubility and low absorption. Additionally, since commercially available medications for EC treatment are created and approved for adult patients, administering them to children sometimes requires an off-label use and an impromptu handling, which can result in therapeutic ineffectiveness. The DPE 3D approach was investigated to create Mini-Tablets (MTs) to suit the swallowing, palatability, and dose flexibility control requirements needed by paediatric patients. Additionally, DPE 3D and the inclusion of hydroxypropyl-ß-cyclodextrin in the initial powder mixture allowed for an improvement in the solubility and rate of BD dissolution in aqueous medium. Then, to accomplish a site-specific drug release at the intestinal level, MTs were coated with a layer of Eudragit FS 30D, an enteric polymer responsive at pH > 7.0 values. In vitro release experiments showed that film-coated MTs were suitable in terms of size and dose, enabling potential therapeutic customization and targeted delivery of BD to the colon.
Asunto(s)
Colitis , Ciclodextrinas , Humanos , Niño , Budesonida , Polvos , Comprimidos , Solubilidad , Liberación de Fármacos , Impresión TridimensionalRESUMEN
The purpose of this study was to develop an oral paediatric formulation of budesonide (BUD) for the treatment of inflammatory bowel disease. A formulation realized as microspheres using the prilling/vibration technique is proposed as an innovative drug delivery system ensuring BUD-specific colonic release in response to different triggers, such as pH, transit time, and resident microbiota. BUD, or the inclusion complex BUD/hydroxypropyl-ß-cyclodextrin, was loaded into microspheres consisting of different ratios of alginate, Eudragit® FS 30D, with or without inulin. Sixteen formulations are produced that show high yields and encapsulation efficiencies, ensuring a homogenous distribution of BUD into the matrix. Microsphere diameters of <655 µm and promising flow properties make these systems suitable for oral administration to children. Swelling and drug release studies in simulated gastrointestinal fluid are used to demonstrate the response of microspheres to time and pH triggers. Studies in faecal medium highlight that drug release from microspheres with inulin is also influenced by microbiota.
Asunto(s)
Budesonida , Inulina , Humanos , Niño , Microesferas , Sistemas de Liberación de Medicamentos/métodos , Ácidos Polimetacrílicos/química , Colon , Concentración de Iones de Hidrógeno , Tamaño de la PartículaRESUMEN
After two decades of research in the field of nanomedicine, nanoscale delivery systems for biologicals are becoming clinically relevant tools. Microfluidic-based fabrication processes are replacing conventional techniques based on precipitation, emulsion, and homogenization. Here, the focus is on solid lipid nanoparticles (SLNs) for the encapsulation and delivery of lysozyme (LZ) as a model biologic. A thorough analysis was conducted to compare conventional versus microfluidic-based production techniques, using a 3D-printed device. The efficiency of the microfluidic technique in producing LZ-loaded SLNs (LZ SLNs) was demonstrated: LZ SLNs were found to have a lower size (158.05 ± 4.86 nm vs 180.21 ± 7.46 nm) and higher encapsulation efficacy (70.15 ± 1.65 % vs 53.58 ± 1.13 %) as compared to particles obtained with conventional methods. Cryo-EM studies highlighted a peculiar turtle-like structure on the surface of LZ SLNs. In vitro studies demonstrated that LZ SLNs were suitable to achieve a sustained release over time (7 days). Enzymatic activity of LZ entrapped into SLNs was challenged on Micrococcus lysodeikticus cultures, confirming the stability and potency of the biologic. This systematic analysis demonstrates that microfluidic production of SLNs can be efficiently used for encapsulation and delivery of complex biological molecules.
Asunto(s)
Productos Biológicos , Nanopartículas , Portadores de Fármacos/química , Lípidos/química , Microfluídica , Muramidasa , Nanopartículas/química , Tamaño de la PartículaRESUMEN
The aim of this study was to develop thiolated self-emulsifying drug delivery systems (SEDDS) and nanostructured lipid carriers (NLCs) with improved mucoadhesive properties. Two non-ionic surfactants bearing a short and long PEG chain, namely polyoxyethylene (10) stearyl ether (PSE10) and polyoxyethylene (100) stearyl ether (PSE100), were thiolated for the first time by substituting the terminal hydroxyl group with a thiol group. The synthesis was confirmed by FT-IR, NMR and Ellman's test. SEDDS and NLCs containing these thiolated compounds were investigated for size, polydispersity index (PDI) and ζ potential. Subsequently, mucus diffusion studies, rheological evaluations after mixing the nanocarriers with mucus and mucoadhesion studies on porcine intestinal mucosa were performed. All nanocarriers had a size less than 250 nm, a maximum PDI of 0.3 and a ζ potential < -9.0 mV. Mucus diffusion studies resulted in the rank order of increasing diffusivity: PSE10-SH < PSE100-SH < PSE10-OH < PSE100-OH for NLCs and PSE10-OH < PSE100-OH < PSE100-SH < PSE10-SH for SEDDS. The mucoadhesive properties and increase in viscosity of SEDDS and NLCs ranked: PSE100-OH < PSE10-OH < PSE100-SH < PSE10-SH. In addition, the short chain PSE10-SH showed higher mucus interactions than the long chain PSE100-SH for both SEDDS and NLCs. The thiolated PSE surfactants appeared to be promising excipients for the design of highly mucoadhesive drug delivery systems.
Asunto(s)
Excipientes , Tensoactivos , Animales , Células CACO-2 , Sistemas de Liberación de Medicamentos/métodos , Éteres , Humanos , Lípidos , Polietilenglicoles , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos de Sulfhidrilo/química , PorcinosRESUMEN
Indomethacin (IND) is topically administered for the treatment of the anterior segment diseases such as conjunctivitis, uveitis, and inflammation prevention for post-cataract surgery, as well as posterior segment diseases as macular edema. Currently IND is available as 0.1% w/v hydroxypropyl-ß-cyclodextrin-based eye drop formulation and its bioavailability is limited by several drawbacks such as the nasolacrimal duct draining, the reflex blinking and the low volume of the conjunctival sac. In this study, chitosan (CS)/sulfobutylether-ß-cyclodextrin (SBE-ß-CD) based nanoparticles (NPs) with a mean diameter of 340 (±7) nm, a ζ-potential value of +18.3 (±0.5) mV and coated with thiolated low molecular weight hyaluronic acid were formulated to improve both the solubility and the residential time in the conjunctival sac of the loaded drug IND. The NPs were prepared through the ionotropic gelation technique, exploiting the interaction between the positively charged amino group of CS and the negatively charged sulfonic group of SBE-ß-CD. The mucoadhesive properties of the NPs were evaluated on chicken trachea and esophagus tissues using a texture analyser. The irritability effects of NPs were disclaimed with Hecam test. The developed coated NPs showed increased residential time in the conjunctival sac, displayed no irritancy or toxicity for local administration, making them an optimal and innovative drug delivery system for the treatment of anterior segment inflammation diseases. On the other hand, the uncoated NPs displayed better permeating properties since they are smaller and could be further exploited for the treatment of posterior segment diseases.
Asunto(s)
Quitosano , Nanopartículas , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Humanos , Ácido Hialurónico , Indometacina , Inflamación , beta-CiclodextrinasRESUMEN
Niclosamide (NCS) is a drug that has been used as an anthelmintic and anti-parasitic drug for about 40 years. Recently, some studies have highlighted its potential in treating various tumors, allowing a repositioning of this drug. Despite its potential, NCS is a Biopharmaceutical Classification System (BCS) Class II drug and is consequently characterized by low aqueous solubility, poor dissolution rate and reduced bioavailability, which limits its applicability. In this work, we utilize a very novel technique, direct powder extrusion (DPE) 3D printing, which overcomes the limitations of previously used techniques (fused deposition modelling, FDM) to achieve direct extrusion of powder mixtures consisting of NCS, hydroxypropyl methylcellulose (HPMC, Affinisol 15 LV), hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and polyethylene glycol (PEG) 6000. For the first time, direct printing of powder blends containing HP-ß-CD was conducted. For all tablets, in vitro dissolution studies showed sustained drug release over 48 h, but for tablets containing HP-ß-CD, the release was faster. Solid-state characterization studies showed that during extrusion, the drug lost its crystal structure and was evenly distributed within the polymer matrix. All printed tablets have exhibited good mechanical and physical features and a stability of the drug content for up to 3 months. This innovative printing technique has demonstrated the possibility to produce personalized pharmaceutical forms directly from powders, avoiding the use of filament used by FDM.
Asunto(s)
Ciclodextrinas , Niclosamida , 2-Hidroxipropil-beta-Ciclodextrina , Liberación de Fármacos , Polvos , Impresión Tridimensional , Solubilidad , Comprimidos/química , Tecnología Farmacéutica/métodosRESUMEN
Diseases that affect the Central Nervous System (CNS) are one of the most exciting challenges of recent years, as they are ubiquitous and affect all ages. Although these disorders show different etiologies, all treatments share the same difficulty represented by the Blood-Brain Barrier (BBB). This barrier acts as a protective system of the delicate cerebral microenvironment, isolating it and making extremely arduous delivering drugs to the brain. To overtake the obstacles provided by the BBB it is essential to explore the changes that affect it, to understand how to exploit these findings in the study and design of innovative brain targeted formulations. Interestingly, the concept of age-related targeting could prove to be a winning choice, as it allows to consider the type of treatment according to the different needs and peculiarities depending on the disease and the age of onset. In this review was considered the prospective contribution of lipid-based formulations, namely Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), which have been highlighted as able to overcome some limitations of other innovative approaches, thus representing a promising strategy for the non-invasive specific treatment of CNS-related diseases.
Asunto(s)
Barrera Hematoencefálica , Nanopartículas , Encéfalo , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Lípidos , Liposomas , Estudios ProspectivosRESUMEN
HYPOTHESIS: Solid lipid nanoparticles (SLNs), co-encapsulating superparamagnetic iron oxide nanoparticles and sorafenib, have been exploited for magnetic-guided drug delivery to the liver. Two different magnetic configurations, both comprising two small magnets, were under-skin implanted to investigate the effect of the magnetic field topology on the magnetic SLNP accumulation in liver tissues. A preliminary simulation analysis was performed to predict the magnetic field topography for each tested configuration. EXPERIMENTS: SLNs were prepared using a hot homogenization approach and characterized using complementary techniques. Their in vitro biological behavior was assessed in HepG-2 liver cancer cells; wild-type mice were used for the in vivo study. The magnet configuration that resulted in a higher magnetic targeting efficiency was investigated by evaluating the iron content in homogenated murine liver tissues. FINDINGS: SLNs, characterized by an average size smaller than 200 nm, retained their superparamagnetic behavior and relevant molecular resonance imaging properties as negative contrast agents. The evaluation of iron accumulation in the liver tissues was consistent with the magnetic induction profile of each magnet configuration, concurring with the results predicted by simulation analysis and obtained by measurements in living mice.
Asunto(s)
Nanopartículas de Magnetita , Animales , Liposomas , Hígado , Campos Magnéticos , Ratones , Nanopartículas , SorafenibRESUMEN
ROS-activated cSrc tyrosine kinase (TK) promotes the degradation of ß-dystroglycan (ß-DG), a dystrophin-glycoprotein complex component, which may reinforce damaging signals in Duchenne muscular dystrophy (DMD). Therefore, cSrc-TK represents a promising therapeutic target. In mdx mice, a 4-week subcutaneous treatment with dasatinib (DAS), a pan-Src-TKs inhibitor approved as anti-leukemic agent, increased muscle ß-DG, with minimal amelioration of morphofunctional indices. To address possible dose/pharmacokinetic (PK) issues, a new oral DAS/hydroxypropyl(HP)-ß-cyclodextrin(CD) complex was developed and chronically administered to mdx mice. The aim was to better assess the role of ß-DG in pathology progression, meanwhile confirming DAS mechanism of action over the long-term, along with its efficacy and tolerability. The 4-week old mdx mice underwent a 12-week treatment with DAS/HP-ß-CD10% dissolved in drinking water, at 10 or 20 mg/kg/day. The outcome was evaluated via in vivo/ex vivo disease-relevant readouts. Oral DAS/HP-ß-CD efficiently distributed in mdx mice plasma and tissues in a dose-related fashion. The new DAS formulation confirmed its main upstream mechanism of action, by reducing ß-DG phosphorylation and restoring its levels dose-dependently in both diaphragm and gastrocnemius muscle. However, it modestly improved in vivo neuromuscular function, ex vivo muscle force, and histopathology, although the partial recovery of muscle elasticity and the decrease of CK and LDH plasma levels suggest an increased sarcolemmal stability of dystrophic muscles. Our clinically oriented study supports the interest in this new, pediatric-suitable DAS formulation for proper exposure and safety and for enhancing ß-DG expression. This latter mechanism is, however, not sufficient by itself to impact on pathology progression. In-depth analyses will be dedicated to elucidating the mechanism limiting DAS effectiveness in dystrophic settings, meanwhile assessing its potential synergy with dystrophin-based molecular therapies.
Asunto(s)
Distrofia Muscular de Duchenne , Animales , Dasatinib , Distroglicanos , RatonesRESUMEN
Solid lipid nanoparticles (SLNs) can combine the advantages of different colloidal carriers and prevent some of their disadvantages. The production of nanoparticles by means of microfluidics represents a successful platform for industrial scale-up of nanoparticle manufacture in a reproducible way. The realisation of a microfluidic technique to obtain SLNs in a continuous and reproducible manner encouraged us to create surface functionalised SLNs for targeted drug release using the same procedure. A tumor homing peptide, iRGD, owning a cryptic C-end Rule (CendR) motif is responsible for neuropilin-1 (NRP-1) binding and for triggering extravasation and tumor penetration of the peptide. In this study, the Paclitaxel loaded-SLNs produced by microfluidics were functionalized with the iRGD peptide. The SLNs proved to be stable in aqueous medium andwere characterized by a Z-average under 150 nm, a polydispersity index below 0.2, a zeta-potential between -20 and -35 mV and a drug encapsulation efficiency around 40%. Moreover, in vitro cytotoxic effects and cellular uptake have been assessed using 2D and 3D tumour models of U87 glioblastoma cell lines. Overall, these results demonstrate that the surface functionalization of SLNs with iRGD allow better cellular uptake and cytotoxicity ability.
Asunto(s)
Nanopartículas , Paclitaxel , Línea Celular Tumoral , Portadores de Fármacos , Liposomas , Microfluídica , Tamaño de la PartículaRESUMEN
Human immunodeficiency virus (HIV) can independently replicate in the central nervous system (CNS) causing neurocognitive impairment even in subjects with suppressed plasma viral load. The antiretroviral drug darunavir (DRV) has been approved for therapy of HIV-infected patients, but its efficacy in the treatment of HIV-associated neurological disorders (HAND) is limited due to the low penetration through the blood-brain barrier (BBB). Therefore, innovations in DRV formulations, based on its encapsulation in optically traceable nanoparticles (NPs), may improve its transport through the BBB, providing, at the same time, optical monitoring of drug delivery within the CNS. The aim of this study was to synthesize biodegradable polymeric NPs loaded with DRV and luminescent, nontoxic carbon dots (C-Dots) and investigate their ability to permeate through an artificial BBB and to inhibit in vitro matrix metalloproteinase-9 (MMP-9) that represents a factor responsible for the development of HIV-related neurological disorders. Biodegradable poly(lactic-co-glycolic) acid (PLGA)-based nanoformulations resulted characterized by an average hydrodynamic size less than 150 nm, relevant colloidal stability in aqueous medium, satisfactory drug encapsulation efficiency, and retained emitting optical properties in the visible region of the electromagnetic spectrum. The assay on the BBB artificial model showed that a larger amount of DRV was able to cross BBB when incorporated in the PLGA NPs and to exert an enhanced inhibition of matrix metalloproteinase-9 (MMP-9) expression levels with respect to free DRV. The overall results reveal the great potential of this class of nanovectors of DRV for an efficacious treatment of HANDs.
Asunto(s)
Infecciones por VIH , Nanopartículas , Enfermedades del Sistema Nervioso , Encéfalo , Darunavir , Infecciones por VIH/tratamiento farmacológico , Humanos , Metaloproteinasa 9 de la MatrizRESUMEN
Many modern therapeutic approaches are based on precise diagnostic evidence, where imaging procedures play an essential role. To date, in the diagnostic field, a plethora of agents have been investigated to increase the selectivity and sensitivity of diagnosis. However, the most common drawbacks of conventional imaging agents reside in their non-specificity, short imaging time, instability, and toxicity. Moreover, routinely used diagnostic agents have low molecular weights and consequently a rapid clearance and renal excretion, and this represents a limitation if long-lasting imaging analyses are to be conducted. Thus, the development of new agents for in vivo diagnostics requires not only a deep knowledge of the physical principles of the imaging techniques and of the physiopathological aspects of the disease but also of the relative pharmaceutical and biopharmaceutical requirements. In this scenario, skills in pharmaceutical technology have become highly indispensable in order to respond to these needs. This review specifically aims to collect examples of newly developed diagnostic agents connoting the importance of an appropriate formulation study for the realization of effective products. Within the context of pharmaceutical technology research in Italy, several groups have developed and patented promising agents for fluorescence and radioactive imaging, the most relevant of which are described hereafter.