Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187379

RESUMEN

Recording and analysis of neural activity is often biased toward detecting sparse subsets of highly active neurons, masking important signals carried in low magnitude and variable responses. To investigate the contribution of seemingly noisy activity to odor encoding, we used mesoscale calcium imaging from mice of both sexes to record odor responses from the dorsal surface of bilateral olfactory bulbs (OBs). The outer layer of the mouse OB is comprised of dendrites organized into discrete "glomeruli", which are defined by odor receptor-specific sensory neuron input. We extracted activity from a large population of glomeruli and used logistic regression to classify odors from individual trials with high accuracy. We then used add-in and drop-out analyses to determine subsets of glomeruli necessary and sufficient for odor classification. Classifiers successfully predicted odor identity even after excluding sparse, highly active glomeruli, indicating that odor information is redundantly represented across a large population of glomeruli. Additionally, we found that Random Forest feature selection informed by Gini Inequality (RFGI) reliably ranked glomeruli by their contribution to overall odor classification. RFGI provided a measure of "feature importance" for each glomerulus that correlated with intuitive features like response magnitude. Finally, in agreement with previous work, we found that odor information persists in glomerular activity after odor offset. Together, our findings support a model of olfactory bulb odor coding where sparse activity is sufficient for odor identification, but information is widely, redundantly available across a large population of glomeruli, with each glomerulus representing information about more than one odor.Significance statement This study leverages meso-scale imaging and machine learning to investigate how odor information is first represented in the brain. Typically, recordings of neuronal activity focus on active individual cells, potentially overlooking broader variations in neuronal responses across populations. Our results demonstrate that a considerable amount of olfactory information is redundantly distributed across a large proportion of olfactory bulb glomeruli. Even after excluding a majority of glomeruli, odor identification remained possible. These findings indicate that, although a few glomeruli are sufficient for odor recognition, an abundance of additional information is represented across a broad population. Understanding how the brain manages redundant olfactory information will shed light on its adaptive mechanisms for navigating diverse real-world circumstances and responding to fluctuating internal states.

2.
J Neurophysiol ; 132(3): 943-952, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39108212

RESUMEN

Cotransmission, meaning the release of multiple neurotransmitters from one synapse, allows for increased diversity of signaling in the brain. Dopamine (DA) and γ-aminobutyric acid (GABA) are known to coexpress in many regions such as the olfactory bulb and the ventral tegmental area. Tuberoinfundibular dopaminergic neurons (TIDA) in the arcuate nucleus of the hypothalamus (Arc) project to the median eminence (ME) and regulate prolactin release from the pituitary, and prior work suggests dopaminergic Arc neurons also cotransmit GABA. However, the extent of cotransmission, and the projection patterns of these neurons have not been fully revealed. Here, we used a genetic intersectional reporter expression approach to selectively label cells that express both tyrosine hydroxylase (TH) and vesicular GABA transporter (VGAT). Through this approach, we identified cells capable of both DA and GABA cotransmission in the Arc, periventricular (Pe), paraventricular (Pa), ventromedial, and the dorsolateral hypothalamic nuclei, in addition to a novel population in the caudate putamen. The highest density of labeled cells was in the Arc, 6.68% of DAPI-labeled cells at Bregma -2.06 mm, and in the Pe, 2.83% of DAPI-labeled cells at Bregma -1.94 mm. Next, we evaluated the projections of these DA/GABA cells by injecting an mCherry virus that fluoresces in DA/GABA cells. We observed a cotransmitting DA/GABA population, with projections within the Arc, and to the Pa and ME. These data suggest DA/GABA Arc neurons are involved in prolactin release as a subset of TIDA neurons. Further investigation will elucidate the interactions of dopamine and GABA in the hypothalamus.NEW & NOTEWORTHY Cotransmitting dopaminergic (DA) and γ-aminobutyric acid (GABA)ergic (DA/GABA) neurons contribute to the complexity of neural circuits. Using a new genetic technique, we characterized the locations, density, and projections of hypothalamic DA/GABA neurons. DA/GABA cells are mostly in the arcuate nucleus (Arc), from which they project locally within the arcuate, to the median eminence (ME), and to the paraventricular (Pa) nucleus. There is also a small and previously unreported group of DA/GABA cells in the caudate putamen.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Neuronas Dopaminérgicas , Neuronas GABAérgicas , Eminencia Media , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/citología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Eminencia Media/metabolismo , Eminencia Media/citología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Masculino , Ratones , Tirosina 3-Monooxigenasa/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Femenino , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología
3.
Nat Metab ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112722

RESUMEN

Feeding behaviour is influenced by two primary factors: homoeostatic needs driven by hunger and hedonic desires for pleasure even in the absence of hunger. While efficient homoeostatic feeding is vital for survival, excessive hedonic feeding can lead to adverse consequences such as obesity and metabolic dysregulations. However, the neurobiological mechanisms that orchestrate homoeostatic versus hedonic food consumption remain largely unknown. Here we show that GABAergic proenkephalin (Penk) neurons in the diagonal band of Broca (DBB) of male mice respond to food presentation. We further demonstrate that a subset of DBBPenk neurons that project to the paraventricular nucleus of the hypothalamus are preferentially activated upon food presentation during fasting periods and transmit a positive valence to facilitate feeding. On the other hand, a separate subset of DBBPenk neurons that project to the lateral hypothalamus are preferentially activated when detecting a high-fat high-sugar (HFHS) diet and transmit a negative valence to inhibit food consumption. Notably, when given free choice of chow and HFHS diets, mice with the whole DBBPenk population ablated exhibit reduced consumption of chow but increased intake of the HFHS diet, resulting in accelerated development of obesity and metabolic disturbances. Together, we identify a molecularly defined neural population in male mice that is crucial for the maintenance of energy balance by facilitating homoeostatic feeding while suppressing hedonic overeating.

4.
Hum Mol Genet ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39146503

RESUMEN

CD2-Associated protein (CD2AP) is a candidate susceptibility gene for Alzheimer's disease, but its role in the mammalian central nervous system remains largely unknown. We show that CD2AP protein is broadly expressed in the adult mouse brain, including within cortical and hippocampal neurons, where it is detected at pre-synaptic terminals. Deletion of Cd2ap altered dendritic branching and spine density, and impaired ubiquitin-proteasome system activity. Moreover, in mice harboring either one or two copies of a germline Cd2ap null allele, we noted increased paired-pulse facilitation at hippocampal Schaffer-collateral synapses, consistent with a haploinsufficient requirement for pre-synaptic release. Whereas conditional Cd2ap knockout in the brain revealed no gross behavioral deficits in either 3.5- or 12-month-old mice, Cd2ap heterozygous mice demonstrated subtle impairments in discrimination learning using a touchscreen task. Based on unbiased proteomics, partial or complete loss of Cd2ap triggered perturbation of proteins with roles in protein folding, lipid metabolism, proteostasis, and synaptic function. Overall, our results reveal conserved, dose-sensitive requirements for CD2AP in the maintenance of neuronal structure and function, including synaptic homeostasis and plasticity, and inform our understanding of possible cell-type specific mechanisms in Alzheimer's Disease.

5.
bioRxiv ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39026881

RESUMEN

Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.

6.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746314

RESUMEN

Obesity is a growing global health epidemic with limited effective therapeutics. Serotonin (5-HT) is one major neurotransmitter which remains an excellent target for new weight-loss therapies, but there remains a gap in knowledge on the mechanisms involved in 5-HT produced in the dorsal Raphe nucleus (DRN) and its involvement in meal initiation. Using a closed-loop optogenetic feeding paradigm, we showed that the 5-HTDRN→arcuate nucleus (ARH) circuit plays an important role in regulating meal initiation. Incorporating electrophysiology and ChannelRhodopsin-2-Assisted Circuit Mapping, we demonstrated that 5-HTDRN neurons receive inhibitory input partially from GABAergic neurons in the DRN, and the 5-HT response to GABAergic inputs can be enhanced by hunger. Additionally, deletion of the GABAA receptor subunit in 5-HT neurons inhibits meal initiation with no effect on the satiation process. Finally, we identified the instrumental role of dopaminergic inputs via dopamine receptor D2 in 5-HTDRN neurons in enhancing the response to GABA-induced feeding. Thus, our results indicate that 5-HTDRN neurons are inhibited by synergistic inhibitory actions of GABA and dopamine, which allows for the initiation of a meal.

7.
Genesis ; 62(2): e23595, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38553878

RESUMEN

Adult neurogenesis has fascinated the field of neuroscience for decades given the prospects of harnessing mechanisms that facilitate the rewiring and/or replacement of adult brain tissue. The subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle are the two main areas in the brain that exhibit ongoing neurogenesis. Of these, adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and continued circuit integration within adult brain tissue. This review focuses on some of the recognized molecular and signaling mechanisms underlying activity-dependent adult-born neuron development. Notably, olfactory activity and behavioral states contribute to adult-born neuron plasticity through sensory and centrifugal inputs, in which calcium-dependent transcriptional programs, local translation, and neuropeptide signaling play important roles. This review also highlights areas of needed continued investigation to better understand the remarkable phenomenon of adult-born neuron integration.


Asunto(s)
Neuronas , Bulbo Olfatorio , Ratones , Animales , Bulbo Olfatorio/fisiología , Neuronas/fisiología , Neurogénesis/fisiología , Encéfalo
8.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383587

RESUMEN

Obesity results from excessive caloric input associated with overeating and presents a major public health challenge. The hypothalamus has received significant attention for its role in governing feeding behavior and body weight homeostasis. However, extrahypothalamic brain circuits also regulate appetite and consumption by altering sensory perception, motivation, and reward. We recently discovered a population of basal forebrain cholinergic (BFc) neurons that regulate appetite suppression. Through viral tracing methods in the mouse model, we found that BFc neurons densely innervate the basolateral amygdala (BLA), a limbic structure involved in motivated behaviors. Using channelrhodopsin-assisted circuit mapping, we identified cholinergic responses in BLA neurons following BFc circuit manipulations. Furthermore, in vivo acetylcholine sensor and genetically encoded calcium indicator imaging within the BLA (using GACh3 and GCaMP, respectively) revealed selective response patterns of activity during feeding. Finally, through optogenetic manipulations in vivo, we found that increased cholinergic signaling from the BFc to the BLA suppresses appetite and food intake. Together, these data support a model in which cholinergic signaling from the BFc to the BLA directly influences appetite and feeding behavior.


Asunto(s)
Prosencéfalo Basal , Complejo Nuclear Basolateral , Ratones , Animales , Complejo Nuclear Basolateral/fisiología , Prosencéfalo Basal/fisiología , Neuronas Colinérgicas/fisiología , Colinérgicos , Ingestión de Alimentos/fisiología
10.
Neuron ; 112(3): 458-472.e6, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38056455

RESUMEN

Maladaptation in balancing internal energy needs and external threat cues may result in eating disorders. However, brain mechanisms underlying such maladaptations remain elusive. Here, we identified that the basal forebrain (BF) sends glutamatergic projections to glutamatergic neurons in the ventral tegmental area (VTA) in mice. Glutamatergic neurons in both regions displayed correlated responses to various stressors. Notably, in vivo manipulation of BF terminals in the VTA revealed that the glutamatergic BF → VTA circuit reduces appetite, increases locomotion, and elicits avoidance. Consistently, activation of VTA glutamatergic neurons reduced body weight, blunted food motivation, and caused hyperactivity with behavioral signs of anxiety, all hallmarks of typical anorexia symptoms. Importantly, activation of BF glutamatergic terminals in the VTA reduced dopamine release in the nucleus accumbens. Collectively, our results point to overactivation of the glutamatergic BF → VTA circuit as a potential cause of anorexia-like phenotypes involving reduced dopamine release.


Asunto(s)
Prosencéfalo Basal , Área Tegmental Ventral , Ratones , Animales , Área Tegmental Ventral/fisiología , Dopamina/fisiología , Anorexia , Fenotipo , Neuronas Dopaminérgicas/fisiología
11.
Cell Rep ; 42(12): 113471, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37980561

RESUMEN

Co-transmission of multiple neurotransmitters from a single neuron increases the complexity of signaling information within defined neuronal circuits. Superficial short-axon cells in the olfactory bulb release both dopamine and γ-aminobutyric acid (GABA), yet the specific targets of these neurotransmitters and their respective roles in olfaction have remained unknown. Here, we implement intersectional genetics in mice to selectively block GABA or dopamine release from superficial short-axon cells to identify their distinct cellular targets, impact on circuit function, and behavioral contribution of each neurotransmitter toward olfactory behaviors. We provide functional and anatomical evidence for divergent superficial short-axon cell signaling onto downstream neurons to shape patterns of mitral cell firing that contribute to olfactory-related behaviors.


Asunto(s)
Bulbo Olfatorio , Olfato , Ratones , Animales , Bulbo Olfatorio/fisiología , Olfato/fisiología , Dopamina , Interneuronas/fisiología , Ácido gamma-Aminobutírico , Neurotransmisores
13.
Commun Biol ; 6(1): 731, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454228

RESUMEN

Thalamo-cortical networks are central to seizures, yet it is unclear how these circuits initiate seizures. We test whether a facial region of the thalamus, the ventral posteromedial nucleus (VPM), is a source of generalized, convulsive motor seizures and if convergent VPM input drives the behavior. To address this question, we devise an in vivo optogenetic mouse model to elicit convulsive motor seizures by driving these inputs and perform single-unit recordings during awake, convulsive seizures to define the local activity of thalamic neurons before, during, and after seizure onset. We find dynamic activity with biphasic properties, raising the possibility that heterogenous activity promotes seizures. Virus tracing identifies cerebellar and cerebral cortical afferents as robust contributors to the seizures. Of these inputs, only microinfusion of lidocaine into the cerebellar nuclei blocks seizure initiation. Our data reveal the VPM as a source of generalized convulsive seizures, with cerebellar input providing critical signals.


Asunto(s)
Convulsiones , Núcleos Talámicos Ventrales , Ratones , Animales , Tálamo , Corteza Cerebral/fisiología , Cerebelo
14.
Cell Rep ; 42(7): 112789, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37422762

RESUMEN

In addition to their role in promoting feeding and obesity development, hypothalamic arcuate agouti-related protein/neuropeptide Y (AgRP/NPY) neurons are widely perceived to be indispensable for maintaining normal feeding and body weight in adults, and consistently, acute inhibition of AgRP neurons is known to reduce short-term food intake. Here, we adopted complementary methods to achieve nearly complete ablation of arcuate AgRP/NPY neurons in adult mice and report that lesioning arcuate AgRP/NPY neurons in adult mice causes no apparent alterations in ad libitum feeding or body weight. Consistent with previous studies, loss of AgRP/NPY neurons blunts fasting refeeding. Thus, our studies show that AgRP/NPY neurons are not required for maintaining ad libitum feeding or body weight homeostasis in adult mice.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Mantenimiento del Peso Corporal , Ratones , Animales , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Pérdida de Peso , Neuronas/metabolismo , Peso Corporal/fisiología
15.
Science ; 380(6650): eade0027, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37319217

RESUMEN

Neuronal activity drives alterations in gene expression within neurons, yet how it directs transcriptional and epigenomic changes in neighboring astrocytes in functioning circuits is unknown. We found that neuronal activity induces widespread transcriptional up-regulation and down-regulation in astrocytes, highlighted by the identification of Slc22a3 as an activity-inducible astrocyte gene that encodes neuromodulator transporter Slc22a3 and regulates sensory processing in the mouse olfactory bulb. Loss of astrocytic Slc22a3 reduced serotonin levels in astrocytes, leading to alterations in histone serotonylation. Inhibition of histone serotonylation in astrocytes reduced the expression of γ-aminobutyric acid (GABA) biosynthetic genes and GABA release, culminating in olfactory deficits. Our study reveals that neuronal activity orchestrates transcriptional and epigenomic responses in astrocytes while illustrating new mechanisms for how astrocytes process neuromodulatory input to gate neurotransmitter release for sensory processing.


Asunto(s)
Astrocitos , Histonas , Bulbo Olfatorio , Percepción Olfatoria , Proteínas de Transporte de Catión Orgánico , Serotonina , Transmisión Sináptica , Animales , Ratones , Astrocitos/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Histonas/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Serotonina/metabolismo , Bulbo Olfatorio/metabolismo , Epigénesis Genética , Percepción Olfatoria/genética , Percepción Olfatoria/fisiología
17.
bioRxiv ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162844

RESUMEN

Interpreting chemical information and translating it into ethologically relevant output is a common challenge of olfactory systems across species. Are computations performed by olfactory circuits conserved across species to overcome these common challenges? To understand this, we compared odor responses in the locust antennal lobe (AL) and mouse olfactory bulb (OB). We found that odors activated nearly mutually exclusive neural ensembles during stimulus presentation ('ON response') and after stimulus termination ('OFF response'). Strikingly, ON and OFF responses evoked by a single odor were anticorrelated with each other. 'Inverted' OFF responses enhanced contrast between odors experienced close together in time. Notably, OFF responses persisted long after odor termination in both AL and OB networks, indicating a form of short-term memory. Taken together, our results reveal key neurodynamic features underlying olfactory computations that are conserved across insect and mammalian olfactory systems.

18.
Cell Rep ; 42(5): 112502, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37171957

RESUMEN

The melanocortin pathway is well established to be critical for body-weight regulation in both rodents and humans. Despite extensive studies focusing on this pathway, the downstream brain sites that mediate its action are not clear. Here, we found that, among the known paraventricular hypothalamic (PVH) neuron groups, those expressing melanocortin receptors 4 (PVHMc4R) preferably project to the ventral part of the lateral septum (LSv), a brain region known to be involved in emotional behaviors. Photostimulation of PVHMc4R neuron terminals in the LSv reduces feeding and causes aversion, whereas deletion of Mc4Rs or disruption of glutamate release from LSv-projecting PVH neurons causes obesity. In addition, disruption of AMPA receptor function in PVH-projected LSv neurons causes obesity. Importantly, chronic inhibition of PVH- or PVHMc4R-projected LSv neurons causes obesity associated with reduced energy expenditure. Thus, the LSv functions as an important node in mediating melanocortin action on body-weight regulation.


Asunto(s)
Melanocortinas , Núcleo Hipotalámico Paraventricular , Humanos , Núcleo Hipotalámico Paraventricular/metabolismo , Melanocortinas/metabolismo , Obesidad/metabolismo , Peso Corporal , Ácido Glutámico/metabolismo
19.
Nat Commun ; 14(1): 2200, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069175

RESUMEN

The melanocortin action is well perceived for its ability to regulate body weight bidirectionally with its gain of function reducing body weight and loss of function promoting obesity. However, this notion cannot explain the difficulty in identifying effective therapeutics toward treating general obesity via activation of the melanocortin action. Here, we provide evidence that altered melanocortin action is only able to cause one-directional obesity development. We demonstrate that chronic inhibition of arcuate neurons expressing proopiomelanocortin (POMC) or paraventricular hypothalamic neurons expressing melanocortin receptor 4 (MC4R) causes massive obesity. However, chronic activation of these neuronal populations failed to reduce body weight. Furthermore, gain of function of the melanocortin action through overexpression of MC4R, POMC or its derived peptides had little effect on obesity prevention or reversal. These results reveal a bias of the melanocortin action towards protection of weight loss and provide a neural basis behind the well-known, but mechanistically ill-defined, predisposition to obesity development.


Asunto(s)
Melanocortinas , Proopiomelanocortina , Ratones , Animales , Proopiomelanocortina/genética , alfa-MSH/farmacología , Obesidad/etiología , Peso Corporal , Pérdida de Peso , Receptor de Melanocortina Tipo 4/genética
20.
Sci Rep ; 12(1): 22044, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543829

RESUMEN

Environmental cues and internal states such as mood, reward, or aversion directly influence feeding behaviors beyond homeostatic necessity. The hypothalamus has been extensively investigated for its role in homeostatic feeding. However, many of the neural circuits that drive more complex, non-homeostatic feeding that integrate valence and sensory cues (such as taste and smell) remain unknown. Here, we describe a basal forebrain (BF)-to-lateral habenula (LHb) circuit that directly modulates non-homeostatic feeding behavior. Using viral-mediated circuit mapping, we identified a population of glutamatergic neurons within the BF that project to the LHb, which responds to diverse sensory cues, including aversive and food-related odors. Optogenetic activation of BF-to-LHb circuitry drives robust, reflexive-like aversion. Furthermore, activation of this circuitry suppresses the drive to eat in a fasted state. Together, these data reveal a role of basal forebrain glutamatergic neurons in modulating LHb-associated aversion and feeding behaviors by sensing environmental cues.


Asunto(s)
Prosencéfalo Basal , Habénula , Habénula/fisiología , Prosencéfalo Basal/fisiología , Afecto , Hipotálamo/fisiología , Conducta Alimentaria , Vías Nerviosas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...