Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 31(5): 544-557, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514848

RESUMEN

The dysregulated immune response and inflammation resulting in severe COVID-19 are still incompletely understood. Having recently determined that aberrant death-ligand-induced cell death can cause lethal inflammation, we hypothesized that this process might also cause or contribute to inflammatory disease and lung failure following SARS-CoV-2 infection. To test this hypothesis, we developed a novel mouse-adapted SARS-CoV-2 model (MA20) that recapitulates key pathological features of COVID-19. Concomitantly with occurrence of cell death and inflammation, FasL expression was significantly increased on inflammatory monocytic macrophages and NK cells in the lungs of MA20-infected mice. Importantly, therapeutic FasL inhibition markedly increased survival of both, young and old MA20-infected mice coincident with substantially reduced cell death and inflammation in their lungs. Intriguingly, FasL was also increased in the bronchoalveolar lavage fluid of critically-ill COVID-19 patients. Together, these results identify FasL as a crucial host factor driving the immuno-pathology that underlies COVID-19 severity and lethality, and imply that patients with severe COVID-19 may significantly benefit from therapeutic inhibition of FasL.


Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Proteína Ligando Fas , SARS-CoV-2 , COVID-19/patología , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/virología , COVID-19/mortalidad , Animales , Proteína Ligando Fas/metabolismo , Ratones , Humanos , Pulmón/patología , Pulmón/virología , Pulmón/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones Endogámicos C57BL , Femenino , Masculino , Inflamación/patología , Inflamación/metabolismo , Líquido del Lavado Bronquioalveolar , Macrófagos/metabolismo , Macrófagos/patología
2.
Langmuir ; 33(22): 5545-5554, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28510438

RESUMEN

The effects of C24:1 sphingolipids have been tested in phospholipid bilayers containing cholesterol. Confocal microscopy, differential scanning calorimetry, and atomic force microscopy imaging and force curves have been used. More precisely, the effects of C24:1 ceramide (nervonoyl ceramide, nCer) were evaluated and compared to those of C16:0 ceramide (palmitoyl ceramide, pCer) in bilayers composed basically of dioleoylphosphatidylcholine, sphingomyelin (either C24:1, nSM or C16:0, pSM) and cholesterol. Combination of equimolecular amounts of C24:1 and C16:0 sphingolipids were also studied under the same conditions. Results show that both pCer and nCer are capable of forming segregated gel domains. Force spectroscopy data point to nCer having a lower stiffening effect than pCer, while the presence of nSM reduces the stiffness. DSC reveals Tm reduction by nSM in every case. Furthermore, pSM seems to better accommodate both ceramides in a single phase of intermediate properties, while nSM partial accommodation of ceramides generates different gel phases with higher stiffnesses caused by interceramide cooperation. If both pSM and nSM are present, a clear preference of both ceramides toward pSM is observed. These findings show the sharp increase in complexity when membranes exhibit different sphingolipids of varying N-acyl chains, which should be a common issue in an actual cell membrane environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...