Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 63(22): 13578-13594, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32910655

RESUMEN

SHP2 is a nonreceptor protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also plays an important role in the programed cell death pathway (PD-1/PD-L1). As an oncoprotein as well as a potential immunomodulator, controlling SHP2 activity is of high therapeutic interest. As part of our comprehensive program targeting SHP2, we identified multiple allosteric binding modes of inhibition and optimized numerous chemical scaffolds in parallel. In this drug annotation report, we detail the identification and optimization of the pyrazine class of allosteric SHP2 inhibitors. Structure and property based drug design enabled the identification of protein-ligand interactions, potent cellular inhibition, control of physicochemical, pharmaceutical and selectivity properties, and potent in vivo antitumor activity. These studies culminated in the discovery of TNO155, (3S,4S)-8-(6-amino-5-((2-amino-3-chloropyridin-4-yl)thio)pyrazin-2-yl)-3-methyl-2-oxa-8-azaspiro[4.5]decan-4-amine (1), a highly potent, selective, orally efficacious, and first-in-class SHP2 inhibitor currently in clinical trials for cancer.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias/enzimología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Antineoplásicos/uso terapéutico , Perros , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Macaca fascicularis , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ratas , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
2.
ACS Chem Biol ; 13(3): 647-656, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29304282

RESUMEN

SHP2 is a cytoplasmic protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell proliferation, differentiation, and survival. Recently, we reported an allosteric mechanism of inhibition that stabilizes the auto-inhibited conformation of SHP2. SHP099 (1) was identified and characterized as a moderately potent, orally bioavailable, allosteric small molecule inhibitor, which binds to a tunnel-like pocket formed by the confluence of three domains of SHP2. In this report, we describe further screening strategies that enabled the identification of a second, distinct small molecule allosteric site. SHP244 (2) was identified as a weak inhibitor of SHP2 with modest thermal stabilization of the enzyme. X-ray crystallography revealed that 2 binds and stabilizes the inactive, closed conformation of SHP2, at a distinct, previously unexplored binding site-a cleft formed at the interface of the N-terminal SH2 and PTP domains. Derivatization of 2 using structure-based design resulted in an increase in SHP2 thermal stabilization, biochemical inhibition, and subsequent MAPK pathway modulation. Downregulation of DUSP6 mRNA, a downstream MAPK pathway marker, was observed in KYSE-520 cancer cells. Remarkably, simultaneous occupation of both allosteric sites by 1 and 2 was possible, as characterized by cooperative biochemical inhibition experiments and X-ray crystallography. Combining an allosteric site 1 inhibitor with an allosteric site 2 inhibitor led to enhanced pharmacological pathway inhibition in cells. This work illustrates a rare example of dual allosteric targeted protein inhibition, demonstrates screening methodology and tactics to identify allosteric inhibitors, and enables further interrogation of SHP2 in cancer and related pathologies.


Asunto(s)
Regulación Alostérica , Sitio Alostérico , Piperidinas/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Pirimidinas/farmacología , Sitios de Unión , Línea Celular Tumoral , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Conformación Proteica , Estabilidad Proteica
3.
Science ; 328(5981): 1009-14, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20489021

RESUMEN

Self-assembled nanostructures obtained from natural and synthetic amphiphiles serve as mimics of biological membranes and enable the delivery of drugs, proteins, genes, and imaging agents. Yet the precise molecular arrangements demanded by these functions are difficult to achieve. Libraries of amphiphilic Janus dendrimers, prepared by facile coupling of tailored hydrophilic and hydrophobic branched segments, have been screened by cryogenic transmission electron microscopy, revealing a rich palette of morphologies in water, including vesicles, denoted dendrimersomes, cubosomes, disks, tubular vesicles, and helical ribbons. Dendrimersomes marry the stability and mechanical strength obtainable from polymersomes with the biological function of stabilized phospholipid liposomes, plus superior uniformity of size, ease of formation, and chemical functionalization. This modular synthesis strategy provides access to systematic tuning of molecular structure and of self-assembled architecture.


Asunto(s)
Dendrímeros/química , Membranas Artificiales , Nanoestructuras , Antibióticos Antineoplásicos/administración & dosificación , Materiales Biomiméticos/química , Microscopía por Crioelectrón , Doxorrubicina/administración & dosificación , Portadores de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulación de Dinámica Molecular , Estructura Molecular , Propiedades de Superficie , Tensoactivos/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA