Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Crit Care Med ; 50(1): 81-92, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34259446

RESUMEN

OBJECTIVES: To report the epidemiology, treatments, and outcomes of adult patients admitted to the ICU after cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. DESIGN: Retrospective cohort study. SETTING: Nine centers across the U.S. part of the chimeric antigen receptor-ICU initiative. PATIENTS: Adult patients treated with chimeric antigen receptor T-cell therapy who required ICU admission between November 2017 and May 2019. INTERVENTIONS: Demographics, toxicities, specific interventions, and outcomes were collected. RESULTS: One-hundred five patients treated with axicabtagene ciloleucel required ICU admission for cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome during the study period. At the time of ICU admission, the majority of patients had grade 3-4 toxicities (66.7%); 15.2% had grade 3-4 cytokine release syndrome and 64% grade 3-4 immune effector cell-associated neurotoxicity syndrome. During ICU stay, cytokine release syndrome was observed in 77.1% patients and immune effector cell-associated neurotoxicity syndrome in 84.8% of patients; 61.9% patients experienced both toxicities. Seventy-nine percent of patients developed greater than or equal to grade 3 toxicities during ICU stay, however, need for vasopressors (18.1%), mechanical ventilation (10.5%), and dialysis (2.9%) was uncommon. Immune Effector Cell-Associated Encephalopathy score less than 3 (69.7%), seizures (20.2%), status epilepticus (5.7%), motor deficits (12.4%), and cerebral edema (7.9%) were more prevalent. ICU mortality was 8.6%, with only three deaths related to cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. Median overall survival time was 10.4 months (95% CI, 6.64-not available mo). Toxicity grade or organ support had no impact on overall survival; higher cumulative corticosteroid doses were associated to decreased overall and progression-free survival. CONCLUSIONS: This is the first study to describe a multicenter cohort of patients requiring ICU admission with cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome after chimeric antigen receptor T-cell therapy. Despite severe toxicities, organ support and in-hospital mortality were low in this patient population.


Asunto(s)
Productos Biológicos/toxicidad , Enfermedad Crítica , Síndrome de Liberación de Citoquinas/inducido químicamente , Inmunoterapia Adoptiva/efectos adversos , Síndromes de Neurotoxicidad/etiología , Receptores Quiméricos de Antígenos , Adulto , Anciano , Comorbilidad , Síndrome de Liberación de Citoquinas/mortalidad , Síndrome de Liberación de Citoquinas/terapia , Femenino , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Síndromes de Neurotoxicidad/mortalidad , Síndromes de Neurotoxicidad/terapia , Gravedad del Paciente , Estudios Retrospectivos , Factores Sociodemográficos , Estados Unidos
2.
J Crit Care ; 58: 58-64, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32361219

RESUMEN

PURPOSE: A task force of experts from 11 United States (US) centers, sought to describe practices for managing chimeric antigen receptor (CAR) T-cell toxicity in the intensive care unit (ICU). MATERIALS AND METHODS: Between June-July 2019, a survey was electronically distributed to 11 centers. The survey addressed: CAR products, toxicities, targeted treatments, management practices and interventions in the ICU. RESULTS: Most centers (82%) had experience with commercial and non-FDA approved CAR products. Criteria for ICU admission varied between centers for patients with Cytokine Release Syndrome (CRS) but were similar for Immune Effector Cell Associated Neurotoxicity Syndrome (ICANS). Practices for vasopressor support, neurotoxicity and electroencephalogram monitoring, use of prophylactic anti-epileptic drugs and tocilizumab were comparable. In contrast, fluid resuscitation, respiratory support, methods of surveillance and management of cerebral edema, use of corticosteroid and other anti-cytokine therapies varied between centers. CONCLUSIONS: This survey identified areas of investigation that could improve outcomes in CAR T-cell recipients such as fluid and vasopressor selection in CRS, management of respiratory failure, and less common complications such as hemophagocytic lymphohistiocytosis, infections and stroke. The variability in specific treatments for CAR T-cell toxicities, needs to be considered when designing future outcome studies of critically ill CAR T-cell patients.


Asunto(s)
Cuidados Críticos/normas , Síndrome de Liberación de Citoquinas/prevención & control , Pautas de la Práctica en Medicina , Receptores Quiméricos de Antígenos/inmunología , Humanos , Inmunoterapia Adoptiva , Unidades de Cuidados Intensivos , Encuestas y Cuestionarios , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...