Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 571: 378-386, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32220680

RESUMEN

Hollow silica particles are desirable for numerous applications, however, designing hollow silica materials with varying hollow structures and shapes remains a significant challenge. Herein, a strategy for the precisely controlled synthesis of hexagonal-shaped hollow silica plate (HHSP) particles was successfully prepared via a sol-gel method at room temperature, using tetraethyl orthosilicate (TEOS) as a silica precursor and zinc oxide (ZnO) particles as a colloidal template. The effect of reaction time was carried out to control the structure and morphology of HHSP particles, and the thickness of silica shell can be tuned in the range from 12.2 to 43.2 nm by adjusting the TEOS/ZnO molar ratios. In addition, the polymer/HHSP composite thin films were prepared using poly(methyl methacrylate) (PMMA) matrix and surface modified HHSP particles by grafting silane coupling agents. High transmittance values were observed (>95%) for the composite thin films (5 µm in thickness, 0.1-1.0 wt% HHSP) in the ultraviolet and visible regions. Furthermore, the refractive index of HHSP particles was observed to be 1.28, which is significantly lower than dense silica (n = 1.46). These results suggest that the approach adopted herein will open up opportunities for the development of a new generation of film materials with a low refractive index.

2.
Langmuir ; 35(42): 13681-13692, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31558027

RESUMEN

Core-shell particles are desirable for many applications, but the precise design and control of their structure remains a great challenge. In this work, we developed a strategy to fabricate carbon-coated SiOx (SiOx@C) core-shell particles via a sol-gel method using the simultaneous hydrolysis-condensation of tetramethyl orthosilicate (TMOS), the polymerization of 3-aminophenol and formaldehyde in the presence of ammonia as a basic catalyst, and cetyltrimethylammonium bromide (CTAB) as a cationic surfactant in the mixed solution of water and methanol followed by the carbonization process. Results from this study provide new insight into the design of core-shell particles by using TMOS as an effective silica precursor for the first time with a well-controlled reaction rate and spherical morphology. To obtain an in-depth understanding of the formation of core-shell structure, a possible mechanism is also proposed in this article. When tested as an anode material for lithium ion batteries (LIBs), the obtained SiOx@C particles delivered a reversible capacity of 509.2 mAh g-1 at a current density of 100 mA g-1. This electrochemical performance is significantly better than those of similar composites without the core-shell structure. The capacity retention after 100 cycles was approximately 80%. These results suggest great promise for the proposed SiOx@C particles with core-shell structure, which may have potential applications in the improvement of various energy-storage materials.

3.
ACS Omega ; 3(4): 4063-4069, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31458642

RESUMEN

A C/SiO2 composite was produced from 3-aminophenol and tetraethyl orthosilicate (TEOS) by a synthesis protocol that involved microwave irradiation. This protocol featured simultaneous 3-aminophenol polymerization and TEOS hydrolysis and condensation, which were achieved rapidly in a microwave reactor. The SiO2 component was formed from low-concentration TEOS confined in cetyltrimethylammonium bromide micelles. We demonstrated a control of the SiO2 particle size, ranging from 20 to 90 nm, by varying the 3-aminophenol concentration. The carbon component provided a microporous structure that greatly contributed to the high specific surface area, 375 m2/g, and served as a host for the nitrogen functional groups with a content of 5.34%, 74% of which were pyridinic type. The composite formation mechanism was clarified from time-series scanning electron microscopy images and dynamic light scattering analysis. An understanding of the composite formation mechanism in this protocol will enable the design of composite morphologies for specific applications.

4.
Langmuir ; 34(1): 30-35, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29215894

RESUMEN

Monodisperse, nitrogen-doped hollow carbon spheres of submicron size were synthesized using hexamethoxymethylmelamine as both a carbon and nitrogen source in a short (1 h) microwave-assisted synthesis. After carbonization at 550 °C, porous carbon spheres with a remarkably high nitrogen content of 37.1% were obtained, which consisting mainly of highly basic pyridinic moieties. The synthesized hollow spheres exhibited high selectivity for carbon dioxide (CO2) over nitrogen and oxygen gases, with a capture capacity up to 1.56 mmol CO2 g-1. The low adsorption enthalpy of the synthesized hollow carbon spheres permits good adsorbent regeneration. Evaluation of the feasibility of scaling up shows their potential for large-scale applications.

5.
RSC Adv ; 8(46): 26277-26282, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35541960

RESUMEN

Creating hollow structures is one strategy for tuning the optical properties of materials. The current study aimed to increase the optical transmittance of silica (SiO2) particles. To this end, hexagonal-shaped hollow silica plate (HHSP) particles were synthesized from tetraethyl orthosilicate (TEOS) and zinc oxide (ZnO) template particles, using a microwave-assisted hydrothermal method. The size and shell thickness of the HHSP particles could be adjusted by using different TEOS/ZnO molar ratios and different ZnO template sizes, respectively. The optical transmittance of the HHSP particles depended on the shell thickness and particle size. The highest transmittance was 99% in the ultraviolet and visible region (300-800 nm) and was exhibited by HHSP particles with the thinnest shell thickness of 6.3 nm. This transmittance was higher than that exhibited by spherical hollow silica particles with a similar shell thickness. This suggested morphology-dependent transmittance for the semiconducting material. These preliminary results illustrate the promising features of the HHSP particles and suggest their potential application in future transparent devices.

6.
Sci Rep ; 7(1): 3646, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28623278

RESUMEN

Despite the strong recent revival of Magnéli phase TiOx as a promising conductive material, synthesis of Magnéli phase TiOx nanoparticles has been a challenge because of the heavy sintering nature of TiO2 at elevated temperatures. We have successfully synthesized chain-structured Magnéli phases TiOx with diameters under 30 nm using a thermal-induced plasma process. The synthesized nanoparticles consisted of a mixture of several Magnéli phases. A post-synthesis heat-treatment was performed to reduce the electrical resistivity without changing the particle morphology. The resistivity of the heat-treated particle was as low as 0.04 Ω.cm, with a specific surface area of 52.9 m2 g-1. The effects of heat-treatment on changes in the crystal structure and their correlation with the electron conductivity are discussed based on transmission electron microscopy images, X-ray diffraction spectra, and X-ray adsorption fine structure spectra. Electrochemical characterization using cyclic voltammetry and potentiodynamic scan shows a remarkable electrochemical stability in a strongly oxidizing environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...