Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Technol Adv Mater ; 25(1): 2379758, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253596

RESUMEN

The impact of contaminants on Copepod sp. and its molecular response is least explored, despite their abundance and dominance among invertebrates in aquatic environments. In the present investigation, Dioithona rigida, a cyclopoid zooplankton, was treated with selenium nanoparticles (SeNPs) to determine the associated biochemical changes, and the chronic exposure effects were recorded using transcriptomic analysis. It was found that, SeNPs were acutely toxic with a lethal dose 50% of 140.9 mg/L. The de novo assembled transcriptome of the copepod comprised 81,814 transcripts, which underwent subsequent annotations to biological processes (23,378), cellular components (21,414), and molecular functions (31,015). Comparison of the expressed transcripts against the treated sample showed that a total of 186 transcript genes were differentially expressed among the D. rigida treatments (control and SeNPs). The significant downregulated genes are coding for DNA repair, DNA-templated DNA replication, DNA integration, oxidoreductase activity and transmembrane transport. Similarly, significant upregulations were observed in protein phosphatase binding and regulation of membrane repolarization. Understanding the impact of SeNPs on copepods is crucial not only for aquatic ecosystem health but also for human health, as these organisms play a key role in marine food webs, ultimately affecting the fish consumed by humans. By elucidating the molecular responses and potential toxicological effects of SeNPs, this study provides key insights for risk assessments and regulatory policies, ensuring the safety of seafood and protecting human health from the unintended consequences of nanoparticle pollution.


The toxicity analysis in Dioithona rigida is the first of its kind as a copepod model for analysis on dietary fixation of metal toxicity at the trophic level. Since this copepod is a major zooplankton fed by fish and crustacean larvae in marine ecosystems, the toxicity analysis on this copepod will give us more insights of the trophic-level food transfer. As far as our knowledge, this is the first study that opted to construct the de novo transcriptomic pipeline for this copepod, treated with selenium nanoparticles. The effectiveness of this work may be further extrapolated to assess the effect of other metal nanoparticles in this model organism. Although the selenium toxicity in marine ecosystem is an established sector, through our combined approach of biochemical analysis and omics approach, the solid framework and comprehensive insight of the selenium toxicity in reproductive fitness and molecular changes has been studied. This study chose to seek a reliable alternative in the sense of new copepod model and omics approach to analyse the relevant metal nanoparticle toxicity in the marine ecosystem.

2.
Chempluschem ; : e202400408, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194048

RESUMEN

Energy storage in electrochemical hybrid capacitors involves fast faradaic reactions such as an intercalation, or redox process occurring at a solid electrode surface at an appropriate potential. Hybrid sodium-ion electrochemical capacitors bring the advantages of both the high specific power of capacitors and the high specific energy of batteries, where activated carbon serves as a critical electrode material. Herein, we have demonstrated that a porous honeycomb structure activated carbon derived from Australian hemp hurd (Cannabis sativa L.) in aqueous Na2SO4 electrolyte showed a specific capacitance of 240 F/g at 1 A/g. The hybrid sodium-ion device employing hemp-derived activated carbon (HAC) coupled with electrolytic manganese dioxide (EMD) in an aqueous Na2SO4 electrolyte showed a specific capacitance of 95 F/g at 1 A/g having a capacitance retention of 90%. The hybrid device (HAC||EMD) can possess excellent electrochemical performance metrics, having a high energy density of 38 Wh/kg at a power density of 761 W/kg. Overall, this study provides insights into the influence of the activation temperature and the KOH impregnation ratio on morphology, porosity distribution, and the activated carbon's electrochemical properties with faster kinetics. The high cell voltage for the device is devoted to the EMD electrode.

3.
RSC Adv ; 14(32): 22799-22800, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39100799

RESUMEN

A passport to a method for everything in materials science.

4.
Chemphyschem ; : e202400596, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965042

RESUMEN

The methodology of nanoarchitectonics is to construct functional materials using nanounits such as atoms, molecules, and nanoobjects, just like architecting buildings. Nanoarchitectonics pursues the ultimate concept of materials science through the integration of related fields. In this review paper, under the title of interface-interactive nanoarchitectonics, several examples of structure fabrication and function development at interfaces will be discussed, highlighting the importance of architecting materials with nanoscale considerations. Two sections provide some examples at the solid and liquid surfaces. In solid interfacial environments, molecular structures can be precisely observed and analyzed with theoretical calculations. Solid surfaces are a prime site for nanoarchitectonics at the molecular level. Nanoarchitectonics of solid surfaces has the potential to pave the way for cutting-edge functionality and science based on advanced observation and analysis. Liquid surfaces are more kinetic and dynamic than solid interfaces, and their high fluidity offers many possibilities for structure fabrications by nanoarchitectonics. The latter feature has advantages in terms of freedom of interaction and diversity of components, therefore, liquid surfaces may be more suitable environments for the development of functionalities. The final section then discusses what is needed for the future of material creation in nanoarchitectonics.

5.
ACS Appl Mater Interfaces ; 16(31): 41363-41370, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39056580

RESUMEN

There is a synergy between coordination chemistry and supramolecular chemistry that has led to the development of innovative hierarchical composites with diverse functionalities. Here, we present a novel approach for the synthesis and characterization of a metal-organic framework on fullerene (MOFOF) composites, achieved through the integration of coordination chemistry and supramolecular chemistry principles. The hierarchical nature of the MOFOF harnesses the inherent properties of metal-organic frameworks and fullerenes. The two-step synthesis procedure involves controlled assembly of fullerenes as tube-like nanostructures (fullerene nanotube: FNT), their surface functionalization, and the on-surface growth of the MOF (in this case, ZIF-67). The method permits the precise tuning of morphology, effective distribution of MOF-on-FNT, and tight compositional control. The materials were comprehensively structurally characterized using electron microscopy, spectroscopic techniques, and other methods to elucidate the unique features and interactions within the MOFOF composites. The main findings reveal that the novel synthesis and characterization of MOFOF composites demonstrate the successful integration of coordination chemistry and supramolecular chemistry for the designing and fabricating of advanced hierarchical composites with tailored properties, including micro- and mesopore channels, interfacial facets, and defect sites. These properties are expected to lead to numerous potential applications such as gas storage and separation, catalysis, sensing, energy storage, and environmental remediation. However, only the capability of acid vapor sensing was tested and is described here.

6.
Chem Asian J ; : e202400622, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956831

RESUMEN

The introduction of phosphorous (P), and oxygen (O) heteroatoms in the natural honeydew chemical structure is one of the most effective, and practical approaches to synthesizing activated carbon for possible high-performance energy storage applications. The performance metrics of supercapacitors depend on surface functional groups and high-surface-area electrodes that can play a dominant role in areas that require high-power applications. Here, we report a phosphorous and oxygen co-doped honeydew peel-derived activated carbon (HDP-AC) electrode with low surface area for supercapacitor via H3PO4 activation. This activator forms phosphorylation with cellulose fibers in the HDP. The formation of heteroatoms stabilizes the cellulose structure by preventing the formation of levoglucosan (C6H10O5), a cellulose combustion product, which would otherwise offer a pathway for a substantial degradation of cellulose into volatile products. Therefore, heteroatom doping has proved effective, in improving the electrochemical properties of AC-based electrodes for supercapacitors. The specific capacitance of HDP-AC exhibits greatly improved performance with increasing carbon-to-H3PO4 ratio, especially in energy density and power density. The improved performance is attributed to the high phosphorous doping with a hierarchical porous structure, which enables the transportation of ions at higher current rates. The high specific capacitance of 486, and 478 F/g at 0.6, and 1.3 A/g in 1 M H2SO4 electrolyte with a prominent retention of 98.5 % is observed for 2 M H3PO4 having an impregnation ratio of 1 : 4. The higher yield of HDP-AC could only be obtained at an activation temperature of 500 °C with an optimized amount of H3PO4 ratio. The findings suggest that the concentration of heteroatoms as surface functional groups in the synthesized HDP-AC depends on the chosen biomass precursor and the processing conditions. This work opens new avenues for utilizing biomass-derived materials in energy storage, emphasizing the importance of sustainable practices in addressing environmental challenges and advancing toward a greener future.

7.
Nanoscale ; 16(28): 13230-13246, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38953604

RESUMEN

Given the creation of materials based on nanoscale science, nanotechnology must be combined with other disciplines. This role is played by the new concept of nanoarchitectonics, the process of constructing functional materials from nanocomponents. Nanoarchitectonics may be highly compatible with applications in biological systems. Conversely, it would be meaningful to consider nanoarchitectonics research oriented toward biological applications with a focus on materials systems. Perhaps, hydrogels are promising as a model medium to realize nanoarchitectonics in biofunctional materials science. In this review, we will provide an overview of some of the defined targets, especially for tissue engineering. Specifically, we will discuss (i) hydrogel bio-inks for 3D bioprinting, (ii) dynamic hydrogels as an artificial extracellular matrix (ECM), and (iii) topographical hydrogels for tissue organization. Based on these backgrounds and conceptual evolution, the construction strategies and functions of bio-gel nanoarchitectonics in medical applications and tissue engineering will be discussed.


Asunto(s)
Bioimpresión , Matriz Extracelular , Hidrogeles , Ingeniería de Tejidos , Hidrogeles/química , Humanos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Animales , Materiales Biocompatibles/química , Nanoestructuras/química , Impresión Tridimensional , Andamios del Tejido/química , Nanotecnología
8.
Chem Biodivers ; : e202401388, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39073302

RESUMEN

Four new alkaloids Chaeronepaline-A (1), Chaeronepaline-B (2), Chaeronepaline-C (3), and Chaeronepaline-D (4) were isolated from Corydalis chaerophylla D.C. collected from Nepal and their structures were elucidated by spectroscopic data, 1D, 2D NMR and mass spectrometry. The structures were established as 3,12- Dimethoxy-5,6-dihydroisoquinolino [2,1-b] isoquinolin- 7- ium- 2, 9- diol (1), 7-methyl-5, 6, 7, 8-tetrahydroisoquinoline- 2, 3- methylenedioxy- (8-> 9)- 10, 12- methylenedioxy- benzoic-16-acid (2), 7- methyl-5, 6, 7, 8- tetrahydro- 8H-spiro-9,14-dihydroxy-11,12-methylenedioxy-indane-isoquinoline (3) and 7- methyl-5, 6, 7, 8- tetrahydro- 8H-spiro-9,14-dihydroxy-11,12-methylenedioxy-indane-isoquinoline-N-oxide (4). The new alkaloids were tested in human hepatoma cell line to assess their ability to modulate the expression of low-density lipoprotein receptor (LDL-R), of proprotein convertase subtilisin/kexin 9 (PCSK9) and to affect cellular cholesterol biosynthesis with the aim to evaluate their potential hypocholesterolemic effect. Results indicated that compounds 2 and 3 upregulate the LDLR, and inhibited the cholesterol biosynthesis with compound 2, which also reduced the secretion of PCSK9 by Huh7 cells. These in vitro data indicated a potential hypocholesterolemic effect of compound 2 that requires further in vivo validation.

9.
Molecules ; 29(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38999120

RESUMEN

Nanoscale science is becoming increasingly important and prominent, and further development will necessitate integration with other material chemistries. In other words, it involves the construction of a methodology to build up materials based on nanoscale knowledge. This is also the beginning of the concept of post-nanotechnology. This role belongs to nanoarchitectonics, which has been rapidly developing in recent years. However, the scope of application of nanoarchitectonics is wide, and it is somewhat difficult to compile everything. Therefore, this review article will introduce the concepts of liquid and interface, which are the keywords for the organization of functional material systems in biological systems. The target interfaces are liquid-liquid interface, liquid-solid interface, and so on. Recent examples are summarized under the categories of molecular assembly, metal-organic framework and covalent organic framework, and living cell. In addition, the latest research on the liquid interfacial nanoarchitectonics of organic semiconductor film is also discussed. The final conclusive section summarizes these features and discusses the necessary components for the development of liquid interfacial nanoarchitectonics.

10.
Phys Chem Chem Phys ; 26(23): 16802-16820, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38828626

RESUMEN

Persistent water contaminants include a variety of substances that evade natural cleaning processes posing severe risks to ecosystems. Their adsorptive elimination is a key approach to safer attenuation. Herein we present the design and development of Prussian blue incorporated polypyrrole (PPY/PB) hybrid nanocomposite as a high-performance adsorbent for the elimination of malachite green (M.G.), isoniazid (INH) and 4-nitrophenol (4-NP) water contaminants. The nanocomposite synthesis was favored by strong dopant-polymer interactions, leading to a PPY/PB material with enhanced electro-active surface area compared to pristine PPY. The structure-activity response of the nanocomposite for the adsorption of target contaminants was unveiled by evaluating its maximum adsorption capacities under environmentally viable conditions. In-depth analysis and optimization of adsorption influencing factors (pH, temperature, and adsorbent dose) were performed. Using equilibrium studies, kinetic model fitting, aided with FTIR analysis, a multi-step mechanism for the adsorption of target contaminants on the nanocomposite was proposed. Furthermore, the PPY/PB nanocomposite also acts as a catalyst, enabling contaminant elimination following a synergistic scheme that was demonstrated using 4-NP contaminant. The synergetic adsorption and catalytic degradation of 4-NP using PPY/PB as adsorbent and catalyst was demonstrated in the presence of NaBH4 as a reducing agent in absence of light. In summary, this work highlights the targeted design of adsorbent, its optimization for adsorptive avidity, and the synergistic role of adsorption trapping in the catalytic degradation of persistent contaminants.

11.
Phys Chem Chem Phys ; 26(18): 13532-13560, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38654597

RESUMEN

As a post-nanotechnology concept, nanoarchitectonics combines nanotechnology with advanced materials science. Molecular machines made by assembling molecular units and their organizational bodies are also products of nanoarchitectonics. They can be regarded as the smallest functional materials. Originally, studies on molecular machines analyzed the average properties of objects dispersed in solution by spectroscopic methods. Researchers' playgrounds partially shifted to solid interfaces, because high-resolution observation of molecular machines is usually done on solid interfaces under high vacuum and cryogenic conditions. Additionally, to ensure the practical applicability of molecular machines, operation under ambient conditions is necessary. The latter conditions are met in dynamic interfacial environments such as the surface of water at room temperature. According to these backgrounds, this review summarizes the trends of molecular machines that continue to evolve under the concept of nanoarchitectonics in interfacial environments. Some recent examples of molecular machines in solution are briefly introduced first, which is followed by an overview of studies of molecular machines and similar supramolecular structures in various interfacial environments. The interfacial environments are classified into (i) solid interfaces, (ii) liquid interfaces, and (iii) various material and biological interfaces. Molecular machines are expanding their activities from the static environment of a solid interface to the more dynamic environment of a liquid interface. Molecular machines change their field of activity while maintaining their basic functions and induce the accumulation of individual molecular machines into macroscopic physical properties molecular machines through macroscopic mechanical motions can be employed to control molecular machines. Moreover, research on molecular machines is not limited to solid and liquid interfaces; interfaces with living organisms are also crucial.

12.
Sci Technol Adv Mater ; 25(1): 2322458, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440402

RESUMEN

A series of porous organic polymers based on a singlet oxygen generating oxoporphyinogen ('OxP') has been successfully prepared from a pseudotetrahedral OxP-tetraamine precursor (OxP(4-NH2Bn)4) by its reaction with tetracarboxylic acid dianhydrides under suitable conditions. Of the compounds studied, those containing naphthalene (OxP-N) and perylene (OxP-P) spacers, respectively, have large surface areas (~530 m2 g-1). On the other hand, the derivative with a simple benzene spacer (OxP-B) exhibits the best 1O2 generating capability. Although the starting OxP-tetraamine precursor is a poor 1O2 generator, its incorporation into OxP POPs leads to a significant enhancement of 1O2 productivity, which is largely due to the transformation of NH2 groups to electron-withdrawing diimides. Overall 1O2 production efficacy of OxP-POPs under irradiation by visible light is significantly improved over the common reference material PCN-222. All the materials OxP-B, OxP-N and OxP-P promote oxidation of thioanisole involving conversion of ambient triplet state oxygen to singlet oxygen under visible light irradiation and its reaction with the sulfide. Although the reaction rate of the oxidation promoted by OxP POPs is generally lower than for conventional materials (such as PCN-222) or previously studied OxP derivatives, undesired overoxidation of the substrate to methyl phenyl sulfone is suppressed. For organic sulfides, selectivity of oxidation is especially important for detoxification of mustard gas (bis(2-chloroethyl)sulfide) or similarly toxic compounds since controlled oxidation leads to the low toxicity bis(2-chloroethyl)sulfoxide while overoxidation leads to intoxification (since bis(2-chloroethyl)sulfone presents greater toxicity to humans than the sulfide substrate). Therefore, OxP POPs capable of promoting selective oxidation of sulfides to sulfoxides have excellent potential to be used as mild and selective detoxification agents.


Oxoporphyrinogen (OxP) is a unique chromophore compound in that it is intrinsically de-aggregated allowing large quantum yields of singlet oxygen generation. Due to its structure, OxP is also an ideal building block for porous systems. In this work, we describe the first incorporation of OxP in highly stable microporous polymers strongly enhanced singlet oxygen generation for selective oxidation of organic sulfides to sulfoxides (as a model reaction) under heterogeneous conditions. The novelty of this work lies in the high stability and easy recovery of the materials, the synergetic enhancement of singlet oxygen generation in the polymers over the starting OxP, and the excellent selectivity for the oxidation reaction.

13.
Sci Technol Adv Mater ; 25(1): 2315013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476511

RESUMEN

The ever-growing use of nature-derived materials creates exciting opportunities for novel development in various therapeutic biomedical applications. Living cells, serving as the foundation of nanoarchitectonics, exhibit remarkable capabilities that enable the development of bioinspired and biomimetic systems, which will be explored in this review. To understand the foundation of this development, we first revisited the anatomy of cells to explore the characteristics of the building blocks of life that is relevant. Interestingly, animal cells have amazing capabilities due to the inherent functionalities in each specialized cell type. Notably, the versatility of cell membranes allows red blood cells and neutrophils' membranes to cloak inorganic nanoparticles that would naturally be eliminated by the immune system. This underscores how cell membranes facilitate interactions with the surroundings through recognition, targeting, signalling, exchange, and cargo attachment. The functionality of cell membrane-coated nanoparticles can be tailored and improved by strategically engineering the membrane, selecting from a variety of cell membranes with known distinct inherent properties. On the other hand, plant cells exhibit remarkable capabilities for synthesizing various nanoparticles. They play a role in the synthesis of metal, carbon-based, and polymer nanoparticles, used for applications such as antimicrobials or antioxidants. One of the versatile components in plant cells is found in the photosynthetic system, particularly the thylakoid, and the pigment chlorophyll. While there are challenges in consistently synthesizing these remarkable nanoparticles derived from nature, this exploration begins to unveil the endless possibilities in nanoarchitectonics research.


We have highlighted the Cell-derived Nanomaterials for Biomedical Applications through the lenses of our team who have experiences with working on cell membrane, thylakoids, and studying the impact of nanoparticles on biological phenomenon such as nanomaterialsinduced endothelial leakiness (NanoEL). In this review, we have discussed the progress and the wide potential of nanoarchitectonics in plant systems, animal cells and microorganisms. Due to our unique backgrounds, our take on this topic may be the novelty of the review.

14.
Sci Technol Adv Mater ; 25(1): 2315014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419801

RESUMEN

The interaction between diverse nanoarchitectured fullerenes and cells is crucial for biomedical applications. Here, we detailed the preparation of hydrophilic self-assembled fullerenes by the liquid-liquid interfacial precipitation (LLIP) method and hydrophilic coating of the materials as a possible vascularization strategy. The interactions of vascular endothelial cells (ECs) with hydrophilic fullerene nanotubes (FNT-P) and hydrophilic fullerene nanowhiskers (FNW-P) were investigated. The average length and diameter of FNT-P were 16 ± 2 µm and 3.4 ± 0.4 µm (i.e. aspect ratios of 4.6), respectively. The average length and diameter of FNW-P were 65 ± 8 µm and 1.2 ± 0.2 µm (i.e. aspect ratios of 53.9), respectively. For two-dimensional (2D) culture after 7 days, the ECs remained viable and proliferated up to ~ 420% and ~ 400% with FNT-P and FNW-P of 50 µg/mL, respectively. Furthermore, an optimized chitosan-based self-healing hydrogel with a modulus of ~400 Pa was developed and used to incorporate self-assembled fullerenes as in vitro three-dimensional (3D) platforms to investigate the impact of FNT-P and FNW-P on ECs within a 3D environment. The addition of FNW-P or FNT-P (50 µg/mL) in the hydrogel system led to proliferation rates of ECs up to ~323% and ~280%, respectively, after 7 days of culture. The ECs in FNW-P hydrogel displayed an elongated shape with aligned morphology, while those in FNT-P hydrogel exhibited a rounded and clustered distribution. Vascular-related gene expressions of ECs were significantly upregulated through interactions with these fullerenes. Thus, the combined use of different nanoarchitectured self-assembled fullerenes and self-healing hydrogels may offer environmental cues influencing EC development in a 3D biomimetic microenvironment, holding promise for advancing vascularization strategy in tissue engineering.


Self-assembled fullerenes with large aspect ratios modulate the morphology and gene expression of endothelial cells within a soft biomimetic 3D microenvironment, representing a promising new vascularization strategy in tissue engineering.

15.
Micromachines (Basel) ; 15(2)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38399010

RESUMEN

Nanotechnology has advanced the techniques for elucidating phenomena at the atomic, molecular, and nano-level. As a post nanotechnology concept, nanoarchitectonics has emerged to create functional materials from unit structures. Consider the material function when nanoarchitectonics enables the design of materials whose internal structure is controlled at the nanometer level. Material function is determined by two elements. These are the functional unit that forms the core of the function and the environment (matrix) that surrounds it. This review paper discusses the nanoarchitectonics of confined space, which is a field for controlling functional materials and molecular machines. The first few sections introduce some of the various dynamic functions in confined spaces, considering molecular space, materials space, and biospace. In the latter two sections, examples of research on the behavior of molecular machines, such as molecular motors, in confined spaces are discussed. In particular, surface space and internal nanospace are taken up as typical examples of confined space. What these examples show is that not only the central functional unit, but also the surrounding spatial configuration is necessary for higher functional expression. Nanoarchitectonics will play important roles in the architecture of such a total system.

16.
Materials (Basel) ; 17(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38399187

RESUMEN

It has become clear that superior material functions are derived from precisely controlled nanostructures. This has been greatly accelerated by the development of nanotechnology. The next step is to assemble materials with knowledge of their nano-level structures. This task is assigned to the post-nanotechnology concept of nanoarchitectonics. However, nanoarchitectonics, which creates intricate three-dimensional functional structures, is not always easy. Two-dimensional nanoarchitectonics based on reactions and arrangements at the surface may be an easier target to tackle. A better methodology would be to define a two-dimensional structure and then develop it into a three-dimensional structure and function. According to these backgrounds, this review paper is organized as follows. The introduction is followed by a summary of the three issues; (i) 2D to 3D dynamic structure control: liquid crystal commanded by the surface, (ii) 2D to 3D rational construction: a metal-organic framework (MOF) and a covalent organic framework (COF); (iii) 2D to 3D functional amplification: cells regulated by the surface. In addition, this review summarizes the important aspects of the ultimate three-dimensional nanoarchitectonics as a perspective. The goal of this paper is to establish an integrated concept of functional material creation by reconsidering various reported cases from the viewpoint of nanoarchitectonics, where nanoarchitectonics can be regarded as a method for everything in materials science.

17.
Chem Commun (Camb) ; 60(16): 2152-2167, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38291864

RESUMEN

Nanoarchitectonics, as a post-nanotechnology concept, constructs functional materials and structures using nanounits of atoms, molecules, and nanomaterials as materials. With the concept of nanoarchitectonics, asymmetric structures, and hierarchical organization, rather than mere assembly and organization of structures, can be produced, where rational physical and chemical communications will lead to the development of more advanced functional materials. Layer-by-layer assembly can be a powerful tool for this purpose, as exemplified in this feature paper. This feature article explores the possibility of constructing advanced functional systems based on recent examples of layer-by-layer assembly. We will illustrate both the development of more basic methods and more advanced nanoarchitectonics systems aiming towards practical applications. Specifically, the following sections will provide examples of (i) advancement in basics and methods, (ii) physico-chemical aspects and applications, (iii) bio-chemical aspects and applications, and (iv) bio-medical applications. It can be concluded that materials nanoarchitectonics based on layer-by-layer assembly is a useful method for assembling asymmetric structures and hierarchical organization, and is a powerful technique for developing functions through physical and chemical communication.

18.
Adv Mater ; 36(26): e2310105, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38234135

RESUMEN

In sharp contrast to conventional solid/hydrogel platforms, water-immiscible liquids, such as perfluorocarbons and silicones, allow the adhesion of mammalian cells via protein nanolayers (PNLs) formed at the interface. However, fluorocarbons and silicones, which are typically used for liquid cell culture, possess only narrow ranges of physicochemical parameters and have not allowed for a wide variety of cell culturing environments. In this paper, it is proposed that water-immiscible ionic liquids (ILs) are a new family of liquid substrates with tunable physicochemical properties and high solvation capabilities. Tetraalkylphosphonium-based ILs are identified as non-cytotoxic ILs, whereon human mesenchymal stem cells are successfully cultured. By reducing the cation charge distribution, or ionicity, via alkyl chain elongation, the interface allows cell spreading with matured focal contacts. High-speed atomic force microscopy observations of the PNL formation process suggest that the cation charge distribution significantly altered the protein adsorption dynamics, which are associated with the degree of protein denaturation and the PNL mechanics. Moreover, by exploiting dissolution capability of ILs, an ion-gel cell scaffold is fabricated. This enables to further identify the significant contribution of bulk subphase mechanics to cellular mechanosensing in liquid-based culture scaffolds.


Asunto(s)
Líquidos Iónicos , Células Madre Mesenquimatosas , Andamios del Tejido , Líquidos Iónicos/química , Humanos , Células Madre Mesenquimatosas/citología , Andamios del Tejido/química , Adhesión Celular/efectos de los fármacos , Agua/química
19.
Materials (Basel) ; 17(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38204123

RESUMEN

The next step in nanotechnology is to establish a methodology to assemble new functional materials based on the knowledge of nanotechnology. This task is undertaken by nanoarchitectonics. In nanoarchitectonics, we architect functional material systems from nanounits such as atoms, molecules, and nanomaterials. In terms of the hierarchy of the structure and the harmonization of the function, the material created by nanoarchitectonics has similar characteristics to the organization of the functional structure in biosystems. Looking at actual biofunctional systems, dynamic properties and interfacial environments are key. In other words, nanoarchitectonics at dynamic interfaces is important for the production of bio-like highly functional materials systems. In this review paper, nanoarchitectonics at dynamic interfaces will be discussed, looking at recent typical examples. In particular, the basic topics of "molecular manipulation, arrangement, and assembly" and "material production" will be discussed in the first two sections. Then, in the following section, "fullerene assembly: from zero-dimensional unit to advanced materials", we will discuss how various functional structures can be created from the very basic nanounit, the fullerene. The above examples demonstrate the versatile possibilities of architectonics at dynamic interfaces. In the last section, these tendencies will be summarized, and future directions will be discussed.

20.
Langmuir ; 39(50): 18175-18186, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38047629

RESUMEN

Transition-metal dichalcogenides (TMDs) have attracted increasing attention in fundamental studies and technological applications owing to their atomically thin thickness, expanded interlayer distance, motif band gap, and phase-transition ability. Even though TMDs have a wide variety of material assets from semiconductor to semimetallic to metallic, the materials with fixed features may not show excellence for precise application. As a result of exclusive crystalline polymorphs, physical and chemical assets of TMDs can be efficiently modified via various approaches of interface nanoarchitectonics, including heteroatom doping, heterostructure, phase engineering, reducing size, alloying, and hybridization. With modified properties, TMDs become interesting materials in diverse fields, including catalysis, energy, electronics, transistors, and optoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...