Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(14): 9942-9957, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38552006

RESUMEN

Highly efficient, cost-effective, and durable electrocatalysts, capable of accelerating sluggish reaction kinetics and attaining high performance, are essential for developing sustainable energy technologies but remain a great challenge. Here, we leverage a facile heterostructure design strategy to construct atomically thin Os@Pd metallenes, with atomic-scale Os nanoclusters of varying geometries confined on the surface layer of the Pd lattice, which exhibit excellent bifunctional properties for catalyzing both hydrogen evolution (HER) and oxygen reduction reactions (ORR). Importantly, Os5%@Pd metallenes manifest a low η10 overpotential of only 11 mV in 1.0 M KOH electrolyte (HER) as well as a highly positive E1/2 potential of 0.92 V in 0.1 M KOH (ORR), along with superior mass activities and electrochemical durability. Theoretical investigations reveal that the strong electron redistribution between Os and Pd elements renders a precise fine-tuning of respective d-band centers, thereby guiding adsorption of hydrogen and oxygen intermediates with an appropriate binding energy for the optimal HER and ORR.

2.
J Am Chem Soc ; 145(36): 19953-19960, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37584454

RESUMEN

Dynamic behavior of intermediate adsorbates, such as diffusion, spillover, and reverse spillover, has a strong influence on the catalytic performance in oxide-supported metal catalysts. However, it is challenging to elucidate how the intermediate adsorbates move on the catalyst surface and find active sites to give the corresponding products. In this study, the effect of the dynamic behavior of methoxy intermediate on methanol decomposition on a Pt/TiO2(110) surface has been clarified by combination of scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), and density functional theory (DFT) calculations. The methoxy intermediates were formed by the dissociative adsorption of methanol molecules on Pt nanoparticles at room temperature followed by spillover to the TiO2(110) support surface. TPD results showed that the methoxy intermediates were thermally decomposed at >350 K on the Pt sites to produce CO (dehydrogenation) and CH4 (C-O bond scission). A decrease of the Pt nanoparticle density lowered the activity for the decomposition reaction and increased the selectivity toward CH4, which indicates that the reaction is controlled by diffusion and reverse spillover of the methoxy intermediates. Time-lapse STM imaging and DFT calculations revealed that the methoxy intermediates migrate on the five-fold coordinated Ti (Ti5c) sites along the [001] or [11¯0] direction with the aid of hydrogen adatoms bonded to the bridging oxygens (Obr) and can move over the entire surface to seek and find active Pt sites. This work offers an in-depth understanding of the important role of intermediate adsorbate migration in the control of the catalytic performance in oxide-supported metal catalysts.

3.
JACS Au ; 3(3): 823-833, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37006766

RESUMEN

Numerous biomimetic molecular catalysts inspired by methane monooxygenases (MMOs) that utilize iron or copper-oxo species as key intermediates have been developed. However, the catalytic methane oxidation activities of biomimetic molecule-based catalysts are still much lower than those of MMOs. Herein, we report that the close stacking of a µ-nitrido-bridged iron phthalocyanine dimer onto a graphite surface is effective in achieving high catalytic methane oxidation activity. The activity is almost 50 times higher than that of other potent molecule-based methane oxidation catalysts and comparable to those of certain MMOs, in an aqueous solution containing H2O2. It was demonstrated that the graphite-supported µ-nitrido-bridged iron phthalocyanine dimer oxidized methane, even at room temperature. Electrochemical investigation and density functional theory calculations suggested that the stacking of the catalyst onto graphite induced partial charge transfer from the reactive oxo species of the µ-nitrido-bridged iron phthalocyanine dimer and significantly lowered the singly occupied molecular orbital level, thereby facilitating electron transfer from methane to the catalyst in the proton-coupled electron-transfer process. The cofacially stacked structure is advantageous for stable adhesion of the catalyst molecule on the graphite surface in the oxidative reaction condition and for preventing decreases in the oxo-basicity and generation rate of the terminal iron-oxo species. We also demonstrated that the graphite-supported catalyst exhibited appreciably enhanced activity under photoirradiation owing to the photothermal effect.

4.
Sci Technol Adv Mater ; 20(1): 379-387, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105802

RESUMEN

We have studied P adsorption on Ni(111), a system which shows complex adsorbate structures. We determined the phase diagram of the surface P adsorbed on Ni(111). At low coverage, amorphous P was observed. At temperatures between 373 and 673 K and coverages above 0.1 monolayer, we found a 7 × 7   R 19.1 ∘ structure, but above 673 K, other complex structures were created. These structures seemed to correlate with each other and we reinterpret a 7 × 7   R 19.1 ∘ structure of P adsorbed on Ni(111) based on the similarities of these surface structures. The new rectangular structure for the 7 × 7   19.1 ∘ is discussed in relation to the Ni2P local structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA