Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Med Phys ; 42(10): 5848-61, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26429259

RESUMEN

PURPOSE: Segmentation of microcalcification (MC) clusters in x-ray mammography is a difficult task for radiologists. Accurate segmentation is prerequisite for quantitative image analysis of MC clusters and subsequent feature extraction and classification in computer-aided diagnosis schemes. METHODS: In this study, a two-stage semiautomated segmentation method of MC clusters is investigated. The first stage is targeted to accurate and time efficient segmentation of the majority of the particles of a MC cluster, by means of a level set method. The second stage is targeted to shape refinement of selected individual MCs, by means of an active contour model. Both methods are applied in the framework of a rich scale-space representation, provided by the wavelet transform at integer scales. Segmentation reliability of the proposed method in terms of inter and intraobserver agreements was evaluated in a case sample of 80 MC clusters originating from the digital database for screening mammography, corresponding to 4 morphology types (punctate: 22, fine linear branching: 16, pleomorphic: 18, and amorphous: 24) of MC clusters, assessing radiologists' segmentations quantitatively by two distance metrics (Hausdorff distance-HDISTcluster, average of minimum distance-AMINDISTcluster) and the area overlap measure (AOMcluster). The effect of the proposed segmentation method on MC cluster characterization accuracy was evaluated in a case sample of 162 pleomorphic MC clusters (72 malignant and 90 benign). Ten MC cluster features, targeted to capture morphologic properties of individual MCs in a cluster (area, major length, perimeter, compactness, and spread), were extracted and a correlation-based feature selection method yielded a feature subset to feed in a support vector machine classifier. Classification performance of the MC cluster features was estimated by means of the area under receiver operating characteristic curve (Az ± Standard Error) utilizing tenfold cross-validation methodology. A previously developed B-spline active rays segmentation method was also considered for comparison purposes. RESULTS: Interobserver and intraobserver segmentation agreements (median and [25%, 75%] quartile range) were substantial with respect to the distance metrics HDISTcluster (2.3 [1.8, 2.9] and 2.5 [2.1, 3.2] pixels) and AMINDISTcluster (0.8 [0.6, 1.0] and 1.0 [0.8, 1.2] pixels), while moderate with respect to AOMcluster (0.64 [0.55, 0.71] and 0.59 [0.52, 0.66]). The proposed segmentation method outperformed (0.80 ± 0.04) statistically significantly (Mann-Whitney U-test, p < 0.05) the B-spline active rays segmentation method (0.69 ± 0.04), suggesting the significance of the proposed semiautomated method. CONCLUSIONS: Results indicate a reliable semiautomated segmentation method for MC clusters offered by deformable models, which could be utilized in MC cluster quantitative image analysis.


Asunto(s)
Calcinosis/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Mamografía , Modelos Teóricos , Diagnóstico por Computador , Humanos
2.
Br J Radiol ; 83(988): 296-309, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20335440

RESUMEN

The current study investigates the feasibility of using texture analysis to quantify the heterogeneity of lesion enhancement kinetics in order to discriminate malignant from benign breast lesions. A total of 82 biopsy-proven breast lesions (51 malignant, 31 benign), originating from 74 women subjected to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) were analysed. Pixel-wise analysis of DCE-MRI lesion data was performed to generate initial enhancement, post-initial enhancement and signal enhancement ratio (SER) parametric maps; these maps were subsequently subjected to co-occurrence matrix texture analysis. The discriminating ability of texture features extracted from each parametric map was investigated using a least-squares minimum distance classifier and further compared with the discriminating ability of the same texture features extracted from the first post-contrast frame. Selected texture features extracted from the SER map achieved an area under receiver operating characteristic curve of 0.922 +/- 0.029, a performance similar to post-initial enhancement map features (0.906 +/- 0.032) and statistically significantly higher than for initial enhancement map (0.767 +/- 0.053) and first post-contrast frame (0.756 +/- 0.060) features. Quantifying the heterogeneity of parametric maps that reflect lesion washout properties could contribute to the computer-aided diagnosis of breast lesions in DCE-MRI.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Medios de Contraste/farmacocinética , Gadolinio DTPA/farmacocinética , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Área Bajo la Curva , Diagnóstico Diferencial , Estudios de Factibilidad , Femenino , Humanos , Imagenología Tridimensional , Persona de Mediana Edad , Reconocimiento de Normas Patrones Automatizadas , Sensibilidad y Especificidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...