Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicol Sci ; 168(1): 3-17, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30364994

RESUMEN

Drug-induced gastrointestinal toxicities (GITs) rank among the most common clinical side effects. Preclinical efforts to reduce incidence are limited by inadequate predictivity of in vitro assays. Recent breakthroughs in in vitro culture methods support intestinal stem cell maintenance and continual differentiation into the epithelial cell types resident in the intestine. These diverse cells self-assemble into microtissues with in vivo-like architecture. Here, we evaluate human GI microtissues grown in transwell plates that allow apical and/or basolateral drug treatment and 96-well throughput. Evaluation of assay utility focused on predictivity for diarrhea because this adverse effect correlates with intestinal barrier dysfunction which can be measured in GI microtissues using transepithelial electrical resistance (TEER). A validation set of widely prescribed drugs was assembled and tested for effects on TEER. When the resulting TEER inhibition potencies were adjusted for clinical exposure, a threshold was identified that distinguished drugs that induced clinical diarrhea from those that lack this liability. Microtissue TEER assay predictivity was further challenged with a smaller set of drugs whose clinical development was limited by diarrhea that was unexpected based on 1-month animal studies. Microtissue TEER accurately predicted diarrhea for each of these drugs. The label-free nature of TEER enabled repeated quantitation with sufficient precision to develop a mathematical model describing the temporal dynamics of barrier damage and recovery. This human 3D GI microtissue is the first in vitro assay with validated predictivity for diarrhea-inducing drugs. It should provide a platform for lead optimization and offers potential for dose schedule exploration.


Asunto(s)
Diarrea/inducido químicamente , Evaluación de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Células Epiteliales/fisiología , Células Epiteliales/ultraestructura , Células CACO-2 , Diferenciación Celular , Impedancia Eléctrica , Humanos , Preparaciones Farmacéuticas , Cultivo Primario de Células
2.
Pharm Res ; 35(4): 72, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29476278

RESUMEN

PURPOSE: The study evaluates the use of new in vitro primary human cell-based organotypic small intestinal (SMI) microtissues for predicting intestinal drug absorption and drug-drug interaction. METHODS: The SMI microtissues were reconstructed using human intestinal fibroblasts and enterocytes cultured on a permeable support. To evaluate the suitability of the intestinal microtissues to model drug absorption, the permeability coefficients across the microtissues were determined for a panel of 11 benchmark drugs with known human absorption and Caco-2 permeability data. Drug-drug interactions were examined using efflux transporter substrates and inhibitors. RESULTS: The 3D-intestinal microtissues recapitulate the structural features and physiological barrier properties of the human small intestine. The microtissues also expressed drug transporters and metabolizing enzymes found on the intestinal wall. Functionally, the SMI microtissues were able to discriminate between low and high permeability drugs and correlated better with human absorption data (r2 = 0.91) compared to Caco-2 cells (r2 = 0.71). Finally, the functionality of efflux transporters was confirmed using efflux substrates and inhibitors which resulted in efflux ratios of >2.0 fold and by a decrease in efflux ratios following the addition of inhibitors. CONCLUSION: The SMI microtissues appear to be a useful pre-clinical tool for predicting drug bioavailability of orally administered drugs.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Interacciones Farmacológicas , Absorción Intestinal , Intestino Delgado/citología , Técnicas de Cultivo de Tejidos/métodos , Administración Oral , Adulto , Disponibilidad Biológica , Células CACO-2 , Células Epiteliales , Femenino , Fibroblastos , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Cultivo Primario de Células , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...