Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3039, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264002

RESUMEN

Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored. Here, we systematically sampled 3 coral morphotypes, 2 fish species, and planktonic communities in 99 reefs from 32 islands across the Pacific Ocean, to assess reef microbiome composition and biogeography. We show a very large richness of reef microorganisms compared to other environments, which extrapolated to all fishes and corals of the Pacific, approximates the current estimated total prokaryotic diversity for the entire Earth. Microbial communities vary among and within the 3 animal biomes (coral, fish, plankton), and geographically. For corals, the cross-ocean patterns of diversity are different from those known for other multicellular organisms. Within each coral morphotype, community composition is always determined by geographic distance first, both at the island and across ocean scale, and then by environment. Our unprecedented sampling effort of coral reef microbiomes, as part of the Tara Pacific expedition, provides new insight into the global microbial diversity, the factors driving their distribution, and the biocomplexity of reef ecosystems.


Asunto(s)
Antozoos , Microbiota , Animales , Arrecifes de Coral , Océano Pacífico , Biodiversidad , Peces , Plancton
2.
Nat Commun ; 14(1): 3037, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264015

RESUMEN

Health and resilience of the coral holobiont depend on diverse bacterial communities often dominated by key marine symbionts of the Endozoicomonadaceae family. The factors controlling their distribution and their functional diversity remain, however, poorly known. Here, we study the ecology of Endozoicomonadaceae at an ocean basin-scale by sampling specimens from three coral genera (Pocillopora, Porites, Millepora) on 99 reefs from 32 islands across the Pacific Ocean. The analysis of 2447 metabarcoding and 270 metagenomic samples reveals that each coral genus harbored a distinct new species of Endozoicomonadaceae. These species are composed of nine lineages that have distinct biogeographic patterns. The most common one, found in Pocillopora, appears to be a globally distributed symbiont with distinct metabolic capabilities, including the synthesis of amino acids and vitamins not produced by the host. The other lineages are structured partly by the host genetic lineage in Pocillopora and mainly by the geographic location in Porites. Millepora is more rarely associated to Endozoicomonadaceae. Our results show that different coral genera exhibit distinct strategies of host-Endozoicomonadaceae associations that are defined at the bacteria lineage level.


Asunto(s)
Antozoos , Gammaproteobacteria , Animales , Antozoos/microbiología , Océano Pacífico , Ecología , Bacterias , Arrecifes de Coral
3.
Nat Commun ; 14(1): 3056, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264036

RESUMEN

Heat waves are causing declines in coral reefs globally. Coral thermal responses depend on multiple, interacting drivers, such as past thermal exposure, endosymbiont community composition, and host genotype. This makes the understanding of their relative roles in adaptive and/or plastic responses crucial for anticipating impacts of future warming. Here, we extracted DNA and RNA from 102 Pocillopora colonies collected from 32 sites on 11 islands across the Pacific Ocean to characterize host-photosymbiont fidelity and to investigate patterns of gene expression across a historical thermal gradient. We report high host-photosymbiont fidelity and show that coral and microalgal gene expression respond to different drivers. Differences in photosymbiotic association had only weak impacts on host gene expression, which was more strongly correlated with the historical thermal environment, whereas, photosymbiont gene expression was largely determined by microalgal lineage. Overall, our results reveal a three-tiered strategy of thermal acclimatization in Pocillopora underpinned by host-photosymbiont specificity, host transcriptomic plasticity, and differential photosymbiotic association under extreme warming.


Asunto(s)
Antozoos , Transcriptoma , Animales , Océano Pacífico , Transcriptoma/genética , Antozoos/genética , Aclimatación/genética , Arrecifes de Coral
4.
Sci Rep ; 12(1): 11034, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773289

RESUMEN

Giant clams produce massive calcified shells with important biological (e.g., defensive) and ecological (e.g., habitat-forming) properties. Whereas elevated seawater temperature is known to alter giant clam shell structure, no study has examined the effects of a simultaneous increase in seawater temperature and partial pressure of carbon dioxide (pCO2) on shell mineralogical composition in these species. We investigated the effects of 60-days exposure to end-of-the-century projections for seawater temperature (+ 3 °C) and pCO2 (+ 500 µatm) on growth, mineralogy, and organic content of shells and scutes in juvenile Tridacna squamosa giant clams. Elevated temperature had no effect on growth rates or organic content, but did increase shell [24Mg]/[40Ca] as well as [40Ca] in newly-formed scutes. Elevated pCO2 increased shell growth and whole animal mass gain. In addition, we report the first evidence of an effect of elevated pCO2 on element/Ca ratios in giant clam shells, with significantly increased [137Ba]/[40Ca] in newly-formed shells. Simultaneous exposure to both drivers greatly increased inter-individual variation in mineral concentrations and resulted in reduced shell N-content which may signal the onset of physiological stress. Overall, our results indicate a greater influence of pCO2 on shell mineralogy in giant clams than previously recognized.


Asunto(s)
Bivalvos , Cardiidae , Exoesqueleto/química , Animales , Bivalvos/fisiología , Dióxido de Carbono/análisis , Agua de Mar/química , Temperatura
5.
Biol Bull ; 241(2): 168-184, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34706205

RESUMEN

AbstractHerbivores can drastically alter the morphology of macroalgae by directly consuming tissue and by inflicting structural wounds. Wounds can result in large amounts of tissue breaking away from macroalgae, amplifying the damage initially caused by herbivores. Herbivores that commonly wound macroalgae often occur over only a portion of a macroalga's lifespan or geographic range. However, we know little about the influence of these periodic or regional occurrences of herbivores on the large-scale seasonal and geographical patterns of macroalgal morphology. We used the intertidal kelp Egregia menziesii to investigate how the kelp's morphology and the prevalence of two prominent kelp-wounding herbivores (limpets and amphipods) changed over two seasons (spring and summer) and over the northern extent of the kelp's geographic range (six sites from central California to northern Washington). Wounds from limpets and amphipods often result in the kelp's fronds being pruned (intercalary meristem broken away), so we quantified kelp size (combined length of all fronds) and pruning (proportion of broken fronds). We found similar results in each season: herbivores were most likely to occur on large, pruned kelp regardless of site; and limpets were the dominant herbivore at southern sites, while amphipods were dominant at northern sites. Despite the geographic shift in the dominant herbivore, kelp had similar levels of total herbivore prevalence (limpets and/or amphipods) and similar morphologies across sites. Our results suggest that large-scale geographic similarities in macroalgal wounding, despite regional variation in the herbivore community, can maintain similar macroalgal morphologies over large geographic areas.


Asunto(s)
Anfípodos , Kelp , Algas Marinas , Animales , Ecosistema , Herbivoria , Estaciones del Año
6.
Physiol Biochem Zool ; 92(4): 430-444, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31192766

RESUMEN

Rapid ocean warming may alter habitat suitability and population fitness for marine ectotherms. Susceptibility to thermal perturbations will depend in part on plasticity of a species' upper thermal limits of performance (CTmax). However, we currently lack data regarding CTmax plasticity for several major marine taxa, including nudibranch mollusks, thus limiting predictive responses to habitat warming for these species. In order to determine relative sensitivity to future warming, we investigated heat tolerance limits (CTmax), heat tolerance plasticity (acclimation response ratio), thermal safety margins, temperature sensitivity of metabolism, and metabolic cost of heat shock in nine species of nudibranchs collected across a thermal gradient along the northeastern Pacific coast of California and held at ambient and elevated temperature for thermal acclimation. Heat tolerance differed significantly among species, ranging from 25.4°±0.5°C to 32.2°±1.8°C ( x¯±SD ), but did not vary with collection site within species. Thermal plasticity was generally high ( 0.52±0.06 , x¯±SE ) and was strongly negatively correlated with CTmax in accordance with the trade-off hypothesis of thermal adaptation. Metabolic costs of thermal challenge were low, with no significant alteration in respiration rate of any species 1 h after exposure to acute heat shock. Thermal safety margins, calculated against maximum habitat temperatures, were negative for nearly all species examined ( -8.5°±5.3°C , x¯±CI [confidence interval]). From these data, we conclude that warm adaptation in intertidal nudibranchs constrains plastic responses to acute thermal challenge and that southern warm-adapted species are likely most vulnerable to future warming.


Asunto(s)
Adaptación Fisiológica/fisiología , Gastrópodos/fisiología , Calor , Animales , Especificidad de la Especie
7.
J Exp Biol ; 221(Pt 18)2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30065035

RESUMEN

Giant clams (genus Tridacna) are the largest living bivalves and, like reef-building corals, host symbiotic dinoflagellate algae (Symbiodinium) that significantly contribute to their energy budget. In turn, Symbiodinium rely on the host to supply inorganic carbon (Ci) for photosynthesis. In corals, host 'proton pump' vacuolar-type H+-ATPase (VHA) is part of a carbon-concentrating mechanism (CCM) that promotes Symbiodinium photosynthesis. Here, we report that VHA in the small giant clam (Tridacna maxima) similarly promotes Symbiodinium photosynthesis. VHA was abundantly expressed in the apical membrane of epithelial cells of T. maxima's siphonal mantle tubule system, which harbors Symbiodinium Furthermore, application of the highly specific pharmacological VHA inhibitors bafilomycin A1 and concanamycin A significantly reduced photosynthetic O2 production by ∼40%. Together with our observation that exposure to light increased holobiont aerobic metabolism ∼5-fold, and earlier estimates that translocated fixed carbon exceeds metabolic demand, we conclude that VHA activity in the siphonal mantle confers strong energetic benefits to the host clam through increased supply of Ci to algal symbionts and subsequent photosynthetic activity. The convergent role of VHA in promoting Symbiodinium photosynthesis in the giant clam siphonal mantle tubule system and coral symbiosome suggests that VHA-driven CCM is a common exaptation in marine photosymbioses that deserves further investigation in other taxa.


Asunto(s)
Proteínas Algáceas/metabolismo , Cardiidae/fisiología , Dinoflagelados/metabolismo , Fotosíntesis , Proteínas Protozoarias/metabolismo , Simbiosis/fisiología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Metabolismo Energético
8.
Biol Lett ; 14(6)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899125

RESUMEN

The giant clam Tridacna crocea, native to Indo-Pacific coral reefs, is noted for its unique ability to bore fully into coral rock and is a major agent of reef bioerosion. However, T. crocea's mechanism of boring has remained a mystery despite decades of research. By exploiting a new, two-dimensional pH-sensing technology and manipulating clams to press their presumptive boring tissue (the pedal mantle) against pH-sensing foils, we show that this tissue lowers the pH of surfaces it contacts by greater than or equal to 2 pH units below seawater pH day and night. Acid secretion is likely mediated by vacuolar-type H+-ATPase, which we demonstrate (by immunofluorescence) is abundant in the pedal mantle outer epithelium. Our discovery of acid secretion solves this decades-old mystery and reveals that, during bioerosion, T. crocea can liberate reef constituents directly to the soluble phase, rather than producing sediment alone as earlier assumed.


Asunto(s)
Bivalvos/metabolismo , Epitelio/química , Ácidos/metabolismo , Animales , Bivalvos/química , Arrecifes de Coral , Concentración de Iones de Hidrógeno , ATPasas de Translocación de Protón/análisis
9.
Integr Comp Biol ; 56(6): 1092-1102, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27375271

RESUMEN

Crustaceans have commonly been used as non-model systems in basic biological research, especially physiological regulation. With the recent and rapid adoption of functional genomic tools, crustaceans are increasingly becoming model systems for ecological investigations of development and evolution and for mechanistic examinations of genotype-phenotype interactions and molecular pathways of response to environmental stressors. Comparative transcriptomic approaches, however, remain constrained by a lack of sequence data in closely related crustacean taxa. We identify challenges in the use of functional genomics tools in comparative analysis among decapod crustacean in light of recent advances. We present RNA-seq data from two congeneric species of porcelain crabs (Petrolisthes cinctipes and P. manimaculis) used to construct two de novo transcriptome assemblies with ∼194K and ∼278K contigs, respectively. We characterize and contrast these assemblies and compare them to a previously generated EST sequence library for P. cinctipes We also discuss the potential use of these data as a case-study system in the broader context of crustacean comparative transcriptomics.


Asunto(s)
Braquiuros/genética , Transcriptoma , Animales , Braquiuros/metabolismo , Especificidad de la Especie
10.
Ann Rev Mar Sci ; 8: 357-78, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26359817

RESUMEN

Abiotic conditions (e.g., temperature and pH) fluctuate through time in most marine environments, sometimes passing intensity thresholds that induce physiological stress. Depending on habitat and season, the peak intensity of different abiotic stressors can occur in or out of phase with one another. Thus, some organisms are exposed to multiple stressors simultaneously, whereas others experience them sequentially. Understanding these physicochemical dynamics is critical because how organisms respond to multiple stressors depends on the magnitude and relative timing of each stressor. Here, we first discuss broad patterns of covariation between stressors in marine systems at various temporal scales. We then describe how these dynamics will influence physiological responses to multi-stressor exposures. Finally, we summarize how multi-stressor effects are currently assessed. We find that multi-stressor experiments have rarely incorporated naturalistic physicochemical variation into their designs, and emphasize the importance of doing so to make ecologically relevant inferences about physiological responses to global change.


Asunto(s)
Ecosistema , Biología Marina , Agua de Mar/química , Cambio Climático , Océanos y Mares , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA