RESUMEN
INTRODUCTION: Intermittent fasting enhances neural bioenergetics, is neuroprotective, and elicits antioxidant effects in various animal models. There are conflicting findings on seizure protection, where intermittent fasting regimens often cause severe weight loss resembling starvation which is unsustainable long-term. Therefore, we tested whether a less intensive intermittent fasting regimen such as time-restricted feeding (TRF) may confer seizure protection. METHODS: Male CD1 mice were assigned to either ad libitum-fed control, continuous 8 h TRF, or 8 h TRF with weekend ad libitum food access (2:5 TRF) for one month. Body weight, food intake, and blood glucose levels were measured. Seizure thresholds were determined at various time points using 6-Hz and maximal electroshock seizure threshold (MEST) tests. Protein levels and mRNA expression of genes, enzyme activity related to glucose metabolism, as well as mitochondrial dynamics were assessed in the cortex and hippocampus. Markers of antioxidant defence were evaluated in the plasma, cortex, and liver. RESULTS: Body weight gain was similar in the ad libitum-fed and TRF mouse groups. In both TRF regimens, blood glucose levels did not change between the fed and fasted state and were higher during fasting than in the ad libitum-fed groups. Mice in the TRF group had increased seizure thresholds in the 6-Hz test on day 15 and on day 19 in a second cohort of 2:5 TRF mice, but similar seizure thresholds at other time points compared to ad libitum-fed mice. Continuous TRF did not alter MEST seizure thresholds on day 28. Mice in the TRF group showed increased maximal activity of pyruvate dehydrogenase in the cortex, which was accompanied by increased protein levels of mitochondrial pyruvate carrier 1 in the cortex and hippocampus. There were no other major changes in protein or mRNA levels associated with energy metabolism and mitochondrial dynamics in the brain, nor markers of antioxidant defence in the brain, liver, or plasma. CONCLUSIONS: Both continuous and 2:5 TRF regimens transiently increased seizure thresholds in the 6-Hz model at around 2 weeks, which coincided with stability of blood glucose levels during the fed and fasted periods. Our findings suggest that the lack of prolonged anticonvulsant effects in the acute electrical seizure models employed may be attributed to only modest metabolic and antioxidant adaptations found in the brain and liver. Our findings underscore the potential therapeutic value of TRF in managing seizure-related conditions.
Asunto(s)
Anticonvulsivantes , Ayuno Intermitente , Humanos , Masculino , Animales , Ratones , Anticonvulsivantes/uso terapéutico , Glucemia , Antioxidantes , Peso Corporal , Modelos Animales de Enfermedad , Convulsiones/tratamiento farmacológico , ARN MensajeroRESUMEN
BACKGROUND: The purpose of this study was to investigate the effect of sex on the efficacy of intermittent post-exercise sauna bathing to induce heat acclimation and improve markers of temperate exercise performance in trained athletes. METHODS: Twenty-six trained runners (16 female; mean ± SD, age 19 ± 1 years, VÌO2max F: 52.6 ± 6.9 mLâ kg-1â min-1, M: 64.6 ± 2.4 mLâ kg-1â min-1) performed a running heat tolerance test (30 min, 9 kmâ h-1/2% gradient, 40 °C/40%RH; HTT) and temperate (18 °C) exercise tests (maximal aerobic capacity [VÌO2max] and lactate profile) pre and post 3 weeks of normal exercise training plus 29 ± 1 min post-exercise sauna bathing (101-108 °C) 3 ± 1 times per week. RESULTS: Females and males exhibited similar reductions (interactions p > 0.05) in peak rectal temperature (- 0.3 °C; p < 0.001), skin temperature (- 0.9 °C; p < 0.001) and heart rate (- 9 beats·min-1; p = 0.001) during the HTT at post- vs pre-intervention. Only females exhibited an increase in active sweat glands on the forearm (measured via modified iodine technique; F: + 57%, p < 0.001; M: + 1%, p = 0.47). Conversely, only males increased forearm blood flow (measured via venous occlusion plethysmography; F: + 31%, p = 0.61; M: + 123%; p < 0.001). Females and males showed similar (interactions p > 0.05) improvements in VÌO2max (+ 5%; p = 0.02) and running speed at 4 mmol·L-1 blood lactate concentration (+ 0.4 km·h-1; p = 0.001). CONCLUSIONS: Three weeks of post-exercise sauna bathing effectively induces heat acclimation in females and males, though possibly amid different thermoeffector adaptations. Post-exercise sauna bathing is also an effective ergogenic aid for both sexes.
RESUMEN
PURPOSE: This study investigated whether intermittent post-exercise sauna bathing across three-weeks endurance training improves exercise heat tolerance and exercise performance markers in temperate conditions, compared to endurance training alone. The subsidiary aim was to determine whether exercise-heat tolerance would further improve following 7-Weeks post-exercise sauna bathing. METHODS: Twenty middle-distance runners (13 female; mean ± SD, age 20 ± 2 years, [Formula: see text]O2max 56.1 ± 8.7 ml kg-1 min-1) performed a running heat tolerance test (30-min, 9 km h-1/2% gradient, 40 °C/40%RH; HTT) and temperate (18 °C) exercise tests (maximal aerobic capacity [[Formula: see text]O2max], speed at 4 mmol L-1 blood lactate concentration ([La-]) before (Pre) and following three-weeks (3-Weeks) normal training (CON; n = 8) or normal training with 28 ± 2 min post-exercise sauna bathing (101-108 °C, 5-10%RH) 3 ± 1 times per week (SAUNA; n = 12). Changes from Pre to 3-Weeks were compared between-groups using an analysis of co-variance. Six SAUNA participants continued the intervention for 7 weeks, completing an additional HTT (7-Weeks; data compared using a one-way repeated-measures analysis of variance). RESULTS: During the HTT, SAUNA reduced peak rectal temperature (Trec; - 0.2 °C), skin temperature (- 0.8 °C), and heart rate (- 11 beats min-1) more than CON at 3-Weeks compared to Pre (all p < 0.05). SAUNA also improved [Formula: see text]O2max (+ 0.27 L-1 min-1; p = 0.02) and speed at 4 mmol L-1 [La-] (+ 0.6 km h-1; p = 0.01) more than CON at 3-Weeks compared to Pre. Only peak Trec (- 0.1 °C; p = 0.03 decreased further from 3-Weeks to 7-Weeks in SAUNA (other physiological variables p > 0.05). CONCLUSIONS: Three-weeks post-exercise sauna bathing is an effective and pragmatic method of heat acclimation, and an effective ergogenic aid. Extending the intervention to seven weeks only marginally improved Trec.