Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 19(1): e1010599, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36693108

RESUMEN

Chronic kidney disease (CKD) affects 10% of the human population, with only a small fraction genetically defined. CKD is also common in dogs and has been diagnosed in nearly all breeds, but its genetic basis remains unclear. Here, we performed a Bayesian mixed model genome-wide association analysis for canine CKD in a boxer population of 117 canine cases and 137 controls, and identified 21 genetic regions associated with the disease. At the top markers from each CKD region, the cases carried an average of 20.2 risk alleles, significantly higher than controls (15.6 risk alleles). An ANOVA test showed that the 21 CKD regions together explained 57% of CKD phenotypic variation in the population. Based on whole genome sequencing data of 20 boxers, we identified 5,206 variants in LD with the top 50 BayesR markers. Following comparative analysis with human regulatory data, 17 putative regulatory variants were identified and tested with electrophoretic mobility shift assays. In total four variants, three intronic variants from the MAGI2 and GALNT18 genes, and one variant in an intergenic region on chr28, showed alternative binding ability for the risk and protective alleles in kidney cell lines. Many genes from the 21 CKD regions, RELN, MAGI2, FGFR2 and others, have been implicated in human kidney development or disease. The results from this study provide new information that may enlighten the etiology of CKD in both dogs and humans.


Asunto(s)
Estudio de Asociación del Genoma Completo , Insuficiencia Renal Crónica , Perros , Humanos , Animales , Teorema de Bayes , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/veterinaria , Insuficiencia Renal Crónica/epidemiología , Riñón , Alelos , Polimorfismo de Nucleótido Simple
2.
PLoS One ; 17(1): e0261845, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35061740

RESUMEN

A number of inherited ataxias is known in humans, with more than 250 loci implicated, most of which are included in human ataxia screening panels. Anecdotally, cases of ataxia in the Norwegian elkhound black have been known for the last 40 years. Affected puppies from three litters were clinically and neurologically examined, and postmortem samples were collected for morphological studies, including ultrastructural analyses. The puppies displayed vestibulocerebellar neurological signs and had degenerative histopathological alterations in cerebellum and brain stem. Three affected dogs, each from different litters, as well as both parents and one healthy littermate from each litter, were whole genome sequenced. Through variant calling we discovered a disease-associated 1 bp deletion in HACE1 (CFA12), resulting in a frameshift at codon 333 and a premature stop codon at codon 366. The perfect association combined with the predicted significant molecular effect, strongly suggest that we have found the causative mutation for Norwegian elkhound black ataxia. We have identified a novel candidate gene for ataxia where dogs can serve as a spontaneous model for improved understanding of ataxia, also in human.


Asunto(s)
Ataxia/genética , Secuencia de Bases , Enfermedades de los Perros/genética , Modelos Genéticos , Eliminación de Secuencia , Ubiquitina-Proteína Ligasas/genética , Animales , Ataxia/enzimología , Ataxia/patología , Enfermedades de los Perros/enzimología , Enfermedades de los Perros/patología , Perros , Masculino , Ubiquitina-Proteína Ligasas/metabolismo
3.
BMC Vet Res ; 6: 34, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20553618

RESUMEN

BACKGROUND: Canine behavioural problems, in particular aggression, are important reasons for euthanasia of otherwise healthy dogs. Aggressive behaviour in dogs also represents an animal welfare problem and a public threat. Elucidating the genetic background of adverse behaviour can provide valuable information to breeding programs and aid the development of drugs aimed at treating undesirable behaviour. With the intentions of identifying gene-specific expression in particular brain parts and comparing brains of aggressive and non-aggressive dogs, we studied amygdala, frontal cortex, hypothalamus and parietal cortex, as these tissues are reported to be involved in emotional reactions, including aggression. Based on quantitative real-time PCR (qRT-PCR) in 20 brains, obtained from 11 dogs euthanised because of aggressive behaviour and nine non-aggressive dogs, we studied expression of nine genes identified in an initial screening by subtraction hybridisation. RESULTS: This study describes differential expression of the UBE2V2 and ZNF227 genes in brains of aggressive and non-aggressive dogs. It also reports differential expression for eight of the studied genes across four different brain tissues (amygdala, frontal cortex, hypothalamus, and parietal cortex). Sex differences in transcription levels were detected for five of the nine studied genes. CONCLUSIONS: The study showed significant differences in gene expression between brain compartments for most of the investigated genes. Increased expression of two genes was associated with the aggression phenotype. Although the UBE2V2 and ZNF227 genes have no known function in regulation of aggressive behaviour, this study contributes to preliminary data of differential gene expression in the canine brain and provides new information to be further explored.


Asunto(s)
Agresión/fisiología , Conducta Animal/fisiología , Encéfalo/metabolismo , Regulación de la Expresión Génica/fisiología , Animales , Perros , Femenino , Perfilación de la Expresión Génica , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...