Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090305

RESUMEN

Therapeutic small interfering RNA (siRNA) requires sugar and backbone modifications to inhibit nuclease degradation. However, metabolic stabilization by phosphorothioate (PS), the only backbone chemistry used clinically, may be insufficient for targeting extrahepatic tissues. To improve oligonucleotide stabilization, we report the discovery, synthesis and characterization of extended nucleic acid (exNA) consisting of a methylene insertion between the 5'-C and 5'-OH of a nucleoside. exNA incorporation is compatible with common oligonucleotide synthetic protocols and the PS backbone, provides stabilization against 3' and 5' exonucleases and is tolerated at multiple oligonucleotide positions. A combined exNA-PS backbone enhances resistance to 3' exonuclease by ~32-fold over the conventional PS backbone and by >1,000-fold over the natural phosphodiester backbone, improving tissue exposure, tissue accumulation and efficacy in mice, both systemically and in the brain. The improved efficacy and durability imparted by exNA may enable therapeutic interventions in extrahepatic tissues, both with siRNA and with other oligonucleotides such as CRISPR guide RNA, antisense oligonucleotides, mRNA and tRNA.

2.
Nucleic Acid Ther ; 34(4): 164-172, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39023561

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by CAG repeat expansion in the first exon of the huntingtin gene (HTT). Oligonucleotide therapeutics, such as short interfering RNA (siRNA), reduce levels of huntingtin mRNA and protein in vivo and are considered a viable therapeutic strategy. However, the extent to which they silence huntingtin mRNA in the nucleus is not established. We synthesized siRNA cross-reactive to mouse (wild-type) Htt and human (mutant) HTT in a divalent scaffold and delivered to two mouse models of HD. In both models, divalent siRNA sustained lowering of wild-type Htt, but not mutant HTT mRNA expression in striatum and cortex. Near-complete silencing of both mutant HTT protein and wild-type HTT protein was observed in both models. Subsequent fluorescent in situ hybridization analysis shows that divalent siRNA acts predominantly on cytoplasmic mutant HTT transcripts, leaving clustered mutant HTT transcripts in the nucleus largely intact in treated HD mouse brains. The observed differences between mRNA and protein levels, exaggerated in the case of extended repeats, might apply to other repeat-associated neurological disorders.


Asunto(s)
Núcleo Celular , Proteína Huntingtina , Enfermedad de Huntington , ARN Mensajero , ARN Interferente Pequeño , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteína Huntingtina/antagonistas & inhibidores , Animales , Ratones , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Enfermedad de Huntington/patología , Enfermedad de Huntington/metabolismo , ARN Interferente Pequeño/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Modelos Animales de Enfermedad , Mutación , Silenciador del Gen
3.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895198

RESUMEN

Oligonucleotide therapeutics (ASOs and siRNAs) have been explored for modulation of gene expression in the central nervous system (CNS), with several drugs approved and many in clinical evaluation. Administration of highly concentrated oligonucleotides to the CNS can induce acute neurotoxicity. We demonstrate that delivery of concentrated oligonucleotides to the CSF in awake mice induces acute toxicity, observable within seconds of injection. Electroencephalography (EEG) and electromyography (EMG) in awake mice demonstrated seizures. Using ion chromatography, we show that siRNAs can tightly bind Ca2+ and Mg2+ up to molar equivalents of the phosphodiester (PO)/phosphorothioate (PS) bonds independently of the structure or phosphorothioate content. Optimization of the formulation by adding high concentrations (above biological levels) of divalent cations (Ca2+ alone, Mg2+ alone, or Ca2+ and Mg2+) prevents seizures with no impact on the distribution or efficacy of the oligonucleotide. The data here establishes the importance of adding Ca2+ and Mg2+ to the formulation for the safety of CNS administration of therapeutic oligonucleotides.

4.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38774633

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by CAG repeat expansion in the first exon of the huntingtin gene (HTT). Oligonucleotide therapeutics, such as short interfering RNA (siRNA), reduce levels of huntingtin mRNA and protein in vivo and are considered a viable therapeutic strategy. However, the extent to which they silence HTT mRNA in the nucleus is not established. We synthesized siRNA cross-reactive to mouse (wild-type) Htt and human (mutant) HTT in a di-valent scaffold and delivered to two mouse models of HD. In both models, di-valent siRNA sustained lowering of wild-type Htt, but not mutant HTT mRNA expression in striatum and cortex. Near-complete silencing of both mutant HTT protein and wild-type Htt protein was observed in both models. Subsequent fluorescent in situ hybridization (FISH) analysis shows that di-valent siRNA acts predominantly on cytoplasmic mutant HTT transcripts, leaving clustered mutant HTT transcripts in the nucleus largely intact in treated HD mouse brains. The observed differences between mRNA and protein levels, exaggerated in the case of extended repeats, might apply to other repeat-associated neurological disorders.

5.
Nucleic Acids Res ; 52(11): 6099-6113, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38726879

RESUMEN

Divalent short-interfering RNA (siRNA) holds promise as a therapeutic approach allowing for the sequence-specific modulation of a target gene within the central nervous system (CNS). However, an siRNA modality capable of simultaneously modulating gene pairs would be invaluable for treating complex neurodegenerative disorders, where more than one pathway contributes to pathogenesis. Currently, the parameters and scaffold considerations for multi-targeting nucleic acid modalities in the CNS are undefined. Here, we propose a framework for designing unimolecular 'dual-targeting' divalent siRNAs capable of co-silencing two genes in the CNS. We systematically adjusted the original CNS-active divalent siRNA and identified that connecting two sense strands 3' and 5' through an intra-strand linker enabled a functional dual-targeting scaffold, greatly simplifying the synthetic process. Our findings demonstrate that the dual-targeting siRNA supports at least two months of maximal distribution and target silencing in the mouse CNS. The dual-targeting divalent siRNA is highly programmable, enabling simultaneous modulation of two different disease-relevant gene pairs (e.g. Huntington's disease: MSH3 and HTT; Alzheimer's disease: APOE and JAK1) with similar potency to a mixture of single-targeting divalent siRNAs against each gene. This work enhances the potential for CNS modulation of disease-related gene pairs using a unimolecular siRNA.


Asunto(s)
Sistema Nervioso Central , ARN Interferente Pequeño , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Apolipoproteínas E/genética , Sistema Nervioso Central/metabolismo , Silenciador del Gen , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Ratones Endogámicos C57BL , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/química
6.
J Neurosci ; 44(14)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38388424

RESUMEN

A missense mutation in the transcription repressor Nucleus accumbens-associated 1 (NACC1) gene at c.892C>T (p.Arg298Trp) on chromosome 19 causes severe neurodevelopmental delay ( Schoch et al., 2017). To model this disorder, we engineered the first mouse model with the homologous mutation (Nacc1+/R284W ) and examined mice from E17.5 to 8 months. Both genders had delayed weight gain, epileptiform discharges and altered power spectral distribution in cortical electroencephalogram, behavioral seizures, and marked hindlimb clasping; females displayed thigmotaxis in an open field. In the cortex, NACC1 long isoform, which harbors the mutation, increased from 3 to 6 months, whereas the short isoform, which is not present in humans and lacks aaR284 in mice, rose steadily from postnatal day (P) 7. Nuclear NACC1 immunoreactivity increased in cortical pyramidal neurons and parvalbumin containing interneurons but not in nuclei of astrocytes or oligodendroglia. Glial fibrillary acidic protein staining in astrocytic processes was diminished. RNA-seq of P14 mutant mice cortex revealed over 1,000 differentially expressed genes (DEGs). Glial transcripts were downregulated and synaptic genes upregulated. Top gene ontology terms from upregulated DEGs relate to postsynapse and ion channel function, while downregulated DEGs enriched for terms relating to metabolic function, mitochondria, and ribosomes. Levels of synaptic proteins were changed, but number and length of synaptic contacts were unaltered at 3 months. Homozygosity worsened some phenotypes including postnatal survival, weight gain delay, and increase in nuclear NACC1. This mouse model simulates a rare form of autism and will be indispensable for assessing pathophysiology and targets for therapeutic intervention.


Asunto(s)
Trastorno Autístico , Factores de Transcripción , Animales , Femenino , Humanos , Masculino , Ratones , Mutación/genética , Proteínas de Neoplasias/genética , Isoformas de Proteínas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Aumento de Peso
7.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187561

RESUMEN

Di-valent short interfering RNA (siRNA) is a promising therapeutic modality that enables sequence-specific modulation of a single target gene in the central nervous system (CNS). To treat complex neurodegenerative disorders, where pathogenesis is driven by multiple genes or pathways, di-valent siRNA must be able to silence multiple target genes simultaneously. Here we present a framework for designing unimolecular "dual-targeting" di-valent siRNAs capable of co-silencing two genes in the CNS. We reconfigured di-valent siRNA - in which two identical, linked siRNAs are made concurrently - to create linear di-valent siRNA - where two siRNAs are made sequentially attached by a covalent linker. This linear configuration, synthesized using commercially available reagents, enables incorporation of two different siRNAs to silence two different targets. We demonstrate that this dual-targeting di-valent siRNA is fully functional in the CNS of mice, supporting at least two months of maximal target silencing. Dual-targeting di-valent siRNA is highly programmable, enabling simultaneous modulation of two different disease-relevant gene pairs (e.g., Huntington's disease: MSH3 and HTT; Alzheimer's disease: APOE and JAK1) with similar potency to a mixture of single-targeting di-valent siRNAs against each gene. This work potentiates CNS modulation of virtually any pair of disease-related targets using a simple unimolecular siRNA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...