Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(9): 2425-2432, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36862109

RESUMEN

We report femtosecond Fe K-edge absorption (XAS) and nonresonant X-ray emission (XES) spectra of ferric cytochrome C (Cyt c) upon excitation of the haem (>300 nm) or mixed excitation of the haem and tryptophan (<300 nm). The XAS and XES transients obtained in both excitation energy ranges show no evidence for electron transfer processes between photoexcited tryptophan (Trp) and the haem, but rather an ultrafast energy transfer, in agreement with previous ultrafast optical fluorescence and transient absorption studies. The reported (J. Phys. Chem. B 2011, 115 (46), 13723-13730) decay times of Trp fluorescence in ferrous (∼350 fs) and ferric (∼700 fs) Cyt c are among the shortest ever reported for Trp in a protein. The observed time scales cannot be rationalized in terms of Förster or Dexter energy transfer mechanisms and call for a more thorough theoretical investigation.


Asunto(s)
Citocromos c , Hemo , Hemo/metabolismo , Triptófano , Transporte de Electrón , Transferencia de Energía , Hierro
2.
Proc Natl Acad Sci U S A ; 117(36): 21914-21920, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32848065

RESUMEN

The structure-function relationship is at the heart of biology, and major protein deformations are correlated to specific functions. For ferrous heme proteins, doming is associated with the respiratory function in hemoglobin and myoglobins. Cytochrome c (Cyt c) has evolved to become an important electron-transfer protein in humans. In its ferrous form, it undergoes ligand release and doming upon photoexcitation, but its ferric form does not release the distal ligand, while the return to the ground state has been attributed to thermal relaxation. Here, by combining femtosecond Fe Kα and Kß X-ray emission spectroscopy (XES) with Fe K-edge X-ray absorption near-edge structure (XANES), we demonstrate that the photocycle of ferric Cyt c is entirely due to a cascade among excited spin states of the iron ion, causing the ferric heme to undergo doming, which we identify. We also argue that this pattern is common to a wide diversity of ferric heme proteins, raising the question of the biological relevance of doming in such proteins.


Asunto(s)
Citocromos c/química , Citocromos c/metabolismo , Humanos , Hierro/química , Hierro/metabolismo , Cinética , Dominios Proteicos , Espectrometría por Rayos X , Espectroscopía de Absorción de Rayos X
4.
J Synchrotron Radiat ; 25(Pt 4): 1238-1248, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979187

RESUMEN

The SwissFEL Aramis beamline, covering the photon energies between 1.77 keV and 12.7 keV, features a suite of online photon diagnostics tools to help both users and FEL operators in analysing data and optimizing experimental and beamline performance. Scientists will be able to obtain information about the flux, spectrum, position, pulse length, and arrival time jitter versus the experimental laser for every photon pulse, with further information about beam shape and size available through the use of destructive screens. This manuscript is an overview of the diagnostics tools available at SwissFEL and presents their design, working principles and capabilities. It also features new developments like the first implementation of a THz-streaking based temporal diagnostics for a hard X-ray FEL, capable of measuring pulse lengths to 5 fs r.m.s. or better.

5.
Chimia (Aarau) ; 71(5): 268-272, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28576151

RESUMEN

Harmonium is a vacuum ultraviolet (VUV) photon source built within the Lausanne Centre for Ultrafast Science (LACUS). Utilising high harmonic generation, photons from 20-110 eV are available to conduct steady-state or ultrafast photoelectron and photoion spectroscopies (PES and PIS). A pulse preserving monochromator provides either high energy resolution (70 meV) or high temporal resolution (40 fs). Three endstations have been commissioned for: a) PES of liquids; b) angular resolved PES (ARPES) of solids and; c) coincidence PES and PIS of gas phase molecules or clusters. The source has several key advantages: high repetition rate (up to 15 kHz) and high photon flux (1011 photons per second at 38 eV). The capabilities of the facility complement the Swiss ultrafast and X-ray community (SwissFEL, SLS, NCCR MUST, etc.) helping to maintain Switzerland's leading role in ultrafast science in the world.

6.
Chimia (Aarau) ; 71(5): 273-277, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28576152

RESUMEN

The manipulation of the electronic properties of solids by light is an exciting goal, which requires knowledge of the electronic structure with energy, momentum and temporal resolution. Time- and angle-resolved photoemission spectroscopy (tr-ARPES) is the most direct probe of the effects of an optical excitation on the band structure of a material. In particular, tr-ARPES in the extreme ultraviolet (VUV) range gives access to the ultrafast dynamics over the entire Brillouin zone. VUV tr-ARPES experiments can now be performed at the ASTRA (ARPES Spectrometer for Time-Resolved Applications) end station of Harmonium, at LACUS. Its capabilities are illustrated by measurements of the ultrafast electronic response of ZrSiTe, a novel topological semimetal characterized by linearly dispersing states located at the Brillouin zone boundary.

7.
Phys Chem Chem Phys ; 19(26): 17052-17062, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28650009

RESUMEN

The photophysics of ferricyanide in H2O, D2O and ethylene glycol was studied upon excitation of ligand-to-metal charge transfer (LMCT) transitions by combining ultrafast photoelectron spectroscopy (PES) of liquids and transient vibrational spectroscopy. Upon 400 nm excitation in water, the PES results show a prompt reduction of the Fe3+ to Fe2+ and a back electron transfer in ∼0.5 ps concomitant with the appearance and decay of a strongly broadened infrared absorption at ∼2065 cm-1. In ethylene glycol, the same IR absorption band decays in ∼1 ps, implying a strong dependence of the back electron transfer on the solvent. Thereafter, the ground state ferric species is left vibrationally hot with significant excitation of up to two quanta of the CN-stretch modes, which completely decay on a 10 ps time scale. Under 265 nm excitation even higher CN-stretch levels are populated. Finally, from a tiny residual transient IR signal, we deduce that less than 2% of the excited species undergo photoaquation, in line with early flash photolysis experiments. The latter is more significant at 265 nm compared to 400 nm excitation, which suggests photodissociation in this system is an unlikely statistical process related to the large excess of vibrational energy.

8.
Struct Dyn ; 4(6): 061508, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29333473

RESUMEN

The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.

9.
Opt Lett ; 36(10): 1746-8, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21593877

RESUMEN

We present a technique for frequency-resolved wavefront characterization of high harmonics based on lateral shearing interferometry. Tilted replicas of the driving laser pulse are produced by a Mach-Zehnder interferometer, producing separate focii in the target. The interference of the resulting harmonics on a flat-field extreme ultraviolet spectrometer yields the spatial phase derivative. A comprehensive set of spatial profiles, resolved by harmonic order, validate the technique and reveal the interplay of single-atom and macroscopic effects.

10.
Opt Lett ; 36(9): 1680-2, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21540967

RESUMEN

We report on the full amplitude and phase characterization of high-intensity few-cycle laser pulses generated in a single-stage hollow core fiber system with subsequent compression by ultrabroadband chirped mirrors. We use a spatially-encoded arrangement (SEA) spectral phase interferometry for direct electric field reconstruction (SPIDER) with spectral filters for ancilla generation to characterize the sub-4 fs pulses with spatial resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...