Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 57(10): 1241-1256.e8, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35580611

RESUMEN

Angiogenesis, the active formation of new blood vessels from pre-existing ones, is a complex and demanding biological process that plays an important role in physiological as well as pathological settings. Recent evidence supports cell metabolism as a critical regulator of angiogenesis. However, whether and how cell metabolism regulates endothelial growth factor receptor levels and nucleotide synthesis remains elusive. We here shown in both human cell lines and mouse models that during developmental and pathological angiogenesis, endothelial cells (ECs) use glutaminolysis-derived glutamate to produce aspartate (Asp) via aspartate aminotransferase (AST/GOT). Asp leads to mTORC1 activation which, in turn, regulates endothelial translation machinery for VEGFR2 and FGFR1 synthesis. Asp-dependent mTORC1 pathway activation also regulates de novo pyrimidine synthesis in angiogenic ECs. These findings identify glutaminolysis-derived Asp as a regulator of mTORC1-dependent endothelial translation and pyrimidine synthesis. Our studies may help overcome anti-VEGF therapy resistance by targeting endothelial growth factor receptor translation.


Asunto(s)
Ácido Aspártico , Células Endoteliales , Diana Mecanicista del Complejo 1 de la Rapamicina , Neovascularización Patológica , Neovascularización Fisiológica , Animales , Ácido Aspártico/metabolismo , Línea Celular , Células Endoteliales/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/fisiología , Biosíntesis de Proteínas/fisiología , Pirimidinas , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
2.
Redox Biol ; 51: 102272, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35255427

RESUMEN

Cutaneous melanoma is the deadliest type of skin cancer, although it accounts for a minority of all skin cancers. Oxidative stress is involved in all stages of melanomagenesis and cutaneous melanoma can sustain a much higher load of Reactive Oxygen Species (ROS) than normal tissues. Melanoma cells exploit specific antioxidant machinery to support redox homeostasis. The enzyme UBIA prenyltransferase domain-containing protein 1 (UBIAD1) is responsible for the biosynthesis of non-mitochondrial CoQ10 and plays an important role as antioxidant enzyme. Whether UBIAD1 is involved in melanoma progression has not been addressed, yet. Here, we provide evidence that UBIAD1 expression is associated with poor overall survival (OS) in human melanoma patients. Furthermore, UBIAD1 and CoQ10 levels are upregulated in melanoma cells with respect to melanocytes. We show that UBIAD1 and plasma membrane CoQ10 sustain melanoma cell survival and proliferation by preventing lipid peroxidation and cell death. Additionally, we show that the NAD(P)H Quinone Dehydrogenase 1 (NQO1), responsible for the 2-electron reduction of CoQ10 on plasma membranes, acts downstream of UBIAD1 to support melanoma survival. By showing that the CoQ10-producing enzyme UBIAD1 counteracts oxidative stress and lipid peroxidation events in cutaneous melanoma, this work may open to new therapeutic investigations based on UBIAD1/CoQ10 loss to cure melanoma.


Asunto(s)
Dimetilaliltranstransferasa/metabolismo , Melanoma , Neoplasias Cutáneas , Antioxidantes/metabolismo , Muerte Celular , Humanos , Peroxidación de Lípido , Melanoma/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/farmacología , Melanoma Cutáneo Maligno
3.
Molecules ; 27(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35268572

RESUMEN

Amyotrophic lateral sclerosis is a progressive and fatal disease that causes motoneurons degeneration and functional impairment of voluntary muscles, with limited and poorly efficient therapies. Alterations in the Nrf2-ARE pathway are associated with ALS pathology and result in aberrant oxidative stress, making the stimulation of the Nrf2-mediated antioxidant response a promising therapeutic strategy in ALS to reduce oxidative stress. In this review, we first introduce the involvement of the Nrf2 pathway in the pathogenesis of ALS and the role played by astrocytes in modulating such a protective pathway. We then describe the currently developed activators of Nrf2, used in both preclinical animal models and clinical studies, taking into consideration their potentialities as well as the possible limitations associated with their use.


Asunto(s)
Factor 2 Relacionado con NF-E2
4.
Redox Biol ; 37: 101753, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33091721

RESUMEN

Cutaneous melanoma is the most aggressive type of skin cancer. Although cutaneous melanoma accounts for a minority of all types of skin cancer, it causes the greatest number of skin cancer related deaths worldwide. Oxidative stress and redox homeostasis have been shown to be involved at each stage of a malignant melanocyte transformation, called melanomagenesis, as well as during drug resistance. Reactive oxygen species (ROS) play an important and diverse role that regulate many aspects of skin cell behaviors ranging from proliferation and stemness, to oxidative damage and cell death. On the other hand, antioxidants are associated with melanoma spread and metastasis. Overall, the contribution of redox homeostasis to melanoma development and progression is controversial and highly complex. The aim of this study is to examine the association between redox homeostasis and the melanomagenic process. To this purpose we are presenting what is currently known about the role of ROS in melanoma initiation and progression. In addition, we are discussing the role of antioxidant mechanisms during the spread of the disease and in cases of melanoma drug resistance. Although challenging, targeting redox homeostasis in melanoma progression remains to be a promising therapeutic approach, especially valid during melanoma drug resistance.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Antioxidantes , Homeostasis , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno , Neoplasias Cutáneas/genética
5.
Circ Res ; 126(4): 439-452, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31852393

RESUMEN

RATIONALE: Hypertension represents a major risk factor for stroke, myocardial infarction, and heart failure and affects 30% of the adult population. Mitochondrial dysfunction contributes to hypertension, but specific mechanisms are unclear. The mitochondrial deacetylase Sirt3 (Sirtuin 3) is critical in the regulation of metabolic and antioxidant functions which are associated with hypertension, and cardiovascular disease risk factors diminish Sirt3 level. OBJECTIVE: We hypothesized that reduced Sirt3 expression contributes to vascular dysfunction in hypertension, but increased Sirt3 protects vascular function and decreases hypertension. METHODS AND RESULTS: To test the therapeutic potential of targeting Sirt3 expression, we developed new transgenic mice with global Sirt3OX (Sirt3 overexpression), which protects from endothelial dysfunction, vascular oxidative stress, and hypertrophy and attenuates Ang II (angiotensin II) and deoxycorticosterone acetate-salt induced hypertension. Global Sirt3 depletion in Sirt3-/- mice results in oxidative stress due to hyperacetylation of mitochondrial superoxide dismutase (SOD2), increases HIF1α (hypoxia-inducible factor-1), reduces endothelial cadherin, stimulates vascular hypertrophy, increases vascular permeability and vascular inflammation (p65, caspase 1, VCAM [vascular cell adhesion molecule-1], ICAM [intercellular adhesion molecule-1], and MCP1 [monocyte chemoattractant protein 1]), increases inflammatory cell infiltration in the kidney, reduces telomerase expression, and accelerates vascular senescence and age-dependent hypertension; conversely, increased Sirt3 expression in Sirt3OX mice prevents these deleterious effects. The clinical relevance of Sirt3 depletion was confirmed in arterioles from human mediastinal fat in patients with essential hypertension showing a 40% decrease in vascular Sirt3, coupled with Sirt3-dependent 3-fold increases in SOD2 acetylation, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity, VCAM, ICAM, and MCP1 levels in hypertensive subjects compared with normotensive subjects. CONCLUSIONS: We suggest that Sirt3 depletion in hypertension promotes endothelial dysfunction, vascular hypertrophy, vascular inflammation, and end-organ damage. Our data support a therapeutic potential of targeting Sirt3 expression in vascular dysfunction and hypertension.


Asunto(s)
Hipertensión Esencial/metabolismo , Corazón/fisiopatología , Inflamación/metabolismo , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Sirtuina 3/metabolismo , Angiotensina II , Animales , Acetato de Desoxicorticosterona , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Hipertensión Esencial/inducido químicamente , Hipertensión Esencial/genética , Femenino , Inflamación/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/genética , Miocardio/metabolismo , Miocardio/patología , Sirtuina 3/genética
6.
Infect Genet Evol ; 72: 141-146, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30593924

RESUMEN

Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are global challenges due to the limited number of effective drugs for treatment. Treatment with less than 4-5 effective drugs might lead to the further emergence of drug resistance and poor clinical outcomes. For better prediction of treatment outcomes, we compared drug-resistance profiles of consecutive clinical MDR Mycobacterium tuberculosis isolates from high- and low-burden settings. This was a retrospective cohort study. We analysed 225 and 229 MDR isolates from Moscow (Russia) and Taiwan, respectively, obtained between 2014 and 2015. Drug susceptibility testing was performed by the Bactec MGIT 960 automated system and the agar proportion method. Detection of resistance-associated mutations in the M. tuberculosis genome was carried out by an array and/or sequencing of selected loci. The principal differences between resistance profiles of MDR isolates in the two countries were the percentages of pre-XDR (40.9% vs. 14.8%) and XDR (34.7% vs. 1.7%) isolates, both of which were significantly higher in Moscow isolates. Forty-eight (33%) of 147 MDR and pre-XDR Russian isolates fall into a group with less than four effective drugs, which accounts for 40% (N = 120) of these isolates. The other 60% in this group were XDR strains (N = 72). Consequently, the average number of effective anti-tuberculosis drugs for MDR-TB treatment was lower for Russian isolates (3 vs. 7). Furthermore, a notable percentage (9%) of isolates resistant to kanamycin harboured mutations in the whiB7 locus, which was not detected by molecular tests targeting common mutations in the rrs and eis loci. We found that 98.2% and 45.9% of MDR isolates from Moscow and Taiwan, respectively, were resistant to streptomycin. Molecular tests for detecting resistance to drugs other than rifampicin, isoniazid, fluoroquinolones, and second-line injectable drugs are needed for individualized therapy. The conventional MDR treatment schemes most probably fail in these cases due to the limited number of effective drugs.


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/epidemiología , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Genes MDR/genética , Genoma Bacteriano/genética , Humanos , Mutación , Estudios Retrospectivos , Federación de Rusia/epidemiología , Taiwán/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
7.
J Antimicrob Chemother ; 72(7): 1901-1906, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28387862

RESUMEN

Objectives: To study the isolates with acquired resistance to bedaquiline and linezolid that were obtained from patients enrolled in a clinical study of a novel therapy regimen for drug-resistant TB in Moscow, Russia. Methods: Linezolid resistance was detected using MGIT 960 with a critical concentration of 1 mg/L. The MIC of bedaquiline was determined using the proportion method. To identify genetic determinants of resistance, sequencing of the mmpR ( Rv0678 ), atpE , atpC , pepQ , Rv1979c , rrl , rplC and rplD loci was performed. Results: A total of 85 isolates from 27 patients with acquired resistance to linezolid and reduced susceptibility to bedaquiline (MIC ≥0.06 mg/L) were tested. Most mutations associated with a high MIC of bedaquiline were found in the mmpR gene. We identified for the first time two patients whose clinical isolates had substitutions D28N and A63V in AtpE, which had previously been found only in in vitro -selected strains. Several patients had isolates with elevated MICs of bedaquiline prior to treatment; four of them also bore mutations in mmpR , indicating the presence of some hidden factors in bedaquiline resistance acquisition. The C154R substitution in ribosomal protein L3 was the most frequent in the linezolid-resistant strains. Mutations in the 23S rRNA gene (g2294a and g2814t) associated with linezolid resistance were also found in two isolates. Heteroresistance was identified in ∼40% of samples, which reflects the complex nature of resistance acquisition. Conclusions: The introduction of novel drugs into treatment must be accompanied by continuous phenotypic susceptibility testing and the analysis of genetic determinants of resistance.


Asunto(s)
Antituberculosos/farmacología , Diarilquinolinas/farmacología , Linezolid/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Acetamidas/uso terapéutico , Antituberculosos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Pruebas de Sensibilidad Microbiana , Moscú/epidemiología , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Oxazolidinonas/uso terapéutico , Estudios Prospectivos , Proteína Ribosomal L3 , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...