Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 212: 255-270, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38122872

RESUMEN

Reactive oxygen and nitrogen species (RONS) are a range of chemical individuals produced by living cells that contribute to the proper functioning of organisms. Cells under oxidative and nitrative stress show excessive production of RONS (including hydrogen peroxide, H2O2, hypochlorous acid, HOCl, and peroxynitrite, ONOO-) which may result in a damage proteins, lipids, and genetic material. Thus, the development of probes for in vivo detection of such oxidants is an active area of research, focusing on molecular redox sensors, including boronate-caged fluorophores. Here, we report a boronate-based styryl probe with a cationic pyridinium moiety (BANEP+) for the fluorescent detection of selected biological oxidants in vitro and in vivo. We compare the chemical reactivity of the BANEP+ probe toward H2O2, HOCl, and ONOO- and examine the influence of the major intracellular non-enzymatic antioxidant molecule, glutathione (GSH). We demonstrate that, at the physiologically relevant GSH concentration, the BANEP+ probe is efficiently oxidized by peroxynitrite, forming its phenolic derivative HNEP+. GSH does not affect the fluorescence properties of the BANEP+ and HNEP+ dyes. Finally, we report the identification of a novel type of molecular marker, with the boronate moiety replaced by the iodine atom, formed from the probe in the presence of HOCl and iodide anion. We conclude that the reported chemical reactivity and structural features of the BANEP+ probe may be a basis for the development of new red fluorescent probes for in vitro and in vivo detection of ONOO-.


Asunto(s)
Oxidantes , Ácido Peroxinitroso , Humanos , Ácido Peroxinitroso/metabolismo , Peróxido de Hidrógeno , Colorantes Fluorescentes/química , Ácido Hipocloroso , Especies de Nitrógeno Reactivo/química , Inflamación
2.
J Org Chem ; 88(23): 16589-16597, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037694

RESUMEN

In the manuscript, a novel method for the preparation of cyclopenta[b]chromenocarbonitrile derivatives via [3+2] cycloaddition reaction of substituted 3-cyanochromones and N-cyclopropyloamines initiated by visible light catalysis has been described. The reaction was performed in the presence of Eosin Y as a photocatalyst. The key parameters responsible for the success of the described strategy are visible light, a small amount of photoredox catalyst, an anhydrous solvent, and an inert atmosphere.

3.
J Org Chem ; 87(15): 9645-9653, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35820401

RESUMEN

In the manuscript, reductive and decarboxylative azaarylation of coumarin-3-carboxylic acids is described. It utilizes the photocatalytic activation of (cyano)azaarenes in the presence of fac-Ir(ppy)3 as a photocatalyst. The methodology is versatile and provides access to biologically relevant 4-substituted-chroman-2-ones. Visible light, photoredox catalyst, base, anhydrous solvent, and inert atmosphere constitute key parameters for the success of the described strategy. The developed methodology involves a wide range of coumarin-3-carboxylic acids as well as (cyano)azaarenes.


Asunto(s)
Luz , Procesos Fotoquímicos , Ácidos Carboxílicos , Cumarinas , Oxidación-Reducción
4.
Front Chem ; 10: 930657, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35864868

RESUMEN

Azanone (HNO, also known as nitroxyl) is the protonated form of the product of one-electron reduction of nitric oxide (•NO), and an elusive electrophilic reactive nitrogen species of increasing pharmacological significance. Over the past 20 years, the interest in the biological chemistry of HNO has increased significantly due to the numerous beneficial pharmacological effects of its donors. Increased availability of various HNO donors was accompanied by great progress in the understanding of HNO chemistry and chemical biology. This review is focused on the chemistry of HNO, with emphasis on reaction kinetics and mechanisms in aqueous solutions.

5.
Sci Rep ; 12(1): 9314, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35660769

RESUMEN

MPO-derived oxidants including HOCl contribute to tissue damage and the initiation and propagation of inflammatory diseases. The search for small molecule inhibitors of myeloperoxidase, as molecular tools and potential drugs, requires the application of high throughput screening assays based on monitoring the activity of myeloperoxidase. In this study, we have compared three classes of fluorescent probes for monitoring myeloperoxidase-derived hypochlorous acid, including boronate-, aminophenyl- and thiol-based fluorogenic probes and we show that all three classes of probes are suitable for this purpose. However, probes based on the coumarin fluorophore turned out to be not reliable indicators of the inhibitors' potency. We have also determined the rate constants of the reaction between HOCl and the probes and they are equal to 1.8 × 104 M-1s-1 for coumarin boronic acid (CBA), 1.1 × 104 M-1s-1 for fluorescein based boronic acid (FLBA), 3.1 × 104 M-1s-1 for 7-(p-aminophenyl)-coumarin (APC), 1.6 × 104 M-1s-1 for 3'-(p-aminophenyl)-fluorescein (APF), and 1 × 107 M-1s-1 for 4-thiomorpholino-7-nitrobenz-2-oxa-1,3-diazole (NBD-TM). The high reaction rate constant of NBD-TM with HOCl makes this probe the most reliable tool to monitor HOCl formation in the presence of compounds showing HOCl-scavenging activity.


Asunto(s)
Ácido Hipocloroso , Peroxidasa , Ácidos Borónicos , Cumarinas , Fluoresceínas , Colorantes Fluorescentes
6.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884784

RESUMEN

Azanone (HNO) is an elusive electrophilic reactive nitrogen species of growing pharmacological and biological significance. Here, we present a comparative kinetic study of HNO reactivity toward selected cyclic C-nucleophiles under aqueous conditions at pH 7.4. We applied the competition kinetics method, which is based on the use of a fluorescein-derived boronate probe FlBA and two parallel HNO reactions: with the studied scavenger or with O2 (k = 1.8 × 104 M-1s-1). We determined the second-order rate constants of HNO reactions with 13 structurally diverse C-nucleophiles (k = 33-20,000 M-1s-1). The results show that the reactivity of HNO toward C-nucleophiles depends strongly on the structure of the scavenger. The data are supported with quantum mechanical calculations. A comprehensive discussion of the HNO reaction with C-nucleophiles is provided.


Asunto(s)
Ácidos Borónicos/química , Ciclohexanonas/química , Ácidos Hidroxámicos/química , Óxidos de Nitrógeno/química , Especies de Nitrógeno Reactivo/química , Sulfonamidas/química , Nitratos/química , Ácido Peroxinitroso/química
7.
Front Chem ; 8: 580899, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33102447

RESUMEN

Boronate-based molecular probes are emerging as one of the most effective tools for detection and quantitation of peroxynitrite and hydroperoxides. This review discusses the chemical reactivity of boronate compounds in the context of their use for detection of biological oxidants, and presents examples of the practical use of those probes in selected chemical, enzymatic, and biological systems. The particular reactivity of boronates toward nucleophilic oxidants makes them a distinct class of probes for redox biology studies. We focus on the recent progress in the design and application of boronate-based probes in redox studies and perspectives for further developments.

8.
Sci Rep ; 10(1): 18626, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33122809

RESUMEN

Hydroethidine (HE) and hydropropidine ([Formula: see text]) are fluorogenic probes used for the detection of the intra- and extracellular superoxide radical anion ([Formula: see text]). In this study, we provide evidence that HE and [Formula: see text] react rapidly with the biologically relevant radicals, including the hydroxyl radical, peroxyl radicals, the trioxidocarbonate radical anion, nitrogen dioxide, and the glutathionyl radical, via one-electron oxidation, forming the corresponding radical cations. At physiological pH, the radical cations of the probes react rapidly with [Formula: see text], leading to the specific 2-hydroxylated cationic products. We determined the rate constants of the reaction between [Formula: see text] and the radical cations of the probes. We also synthesized N-methylated analogs of [Formula: see text] and HE which were used in mechanistic studies. Methylation of the amine groups was not found to prevent the reaction between the radical cation of the probe and the superoxide, but it significantly increased the lifetime of the radical cation and had a substantial effect on the profiles of the oxidation products by inhibiting the formation of dimeric products. We conclude that the N-methylated analogs of HE and [Formula: see text] may be used as a scaffold for the design of a new generation of probes for intra- and extracellular superoxide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...