Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 219: 112807, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36088832

RESUMEN

Bacterial infection is a major complication associated with bioimplant materials, including titanium (Ti) based orthopedic joints and dental implants. Thus, the fabrication of Ti surfaces with antibacterial activity is highly important. Black phosphorus (BP) is a recently discovered promising two-dimensional semiconductor for various biomedical applications due to its tunable bandgap and physicochemical properties. The present study aimed to synthesize zinc oxide (ZnO) laden BP nanohybrids (NH) and their coatings on a Ti bioimplant surface for improving the antibacterial activities against pathogenic bacteria with and without near-infrared (NIR) light irradiation. Nanohybrids were produced with the slightly oxidized BP NF and electrostatically laden ZnO NP. The produced BP-ZnO NH was a NIR active nanomaterial (up to ∼1000 nm), demonstrating a photothermal effect against bacterial infection and showing improved activity by damaging the cell membrane towards S. aureus in comparison to E. coli. Ti surface coated with BP-ZnO NH embedded chitosan (CS) demonstrated better antibacterial activity than BP NF, especially with NIR light treatment. Additionally, the produced BP nanoflakes and BP-ZnO NH, and their coatings over the Ti surface were found to be toxic at a negligible level. Electrochemical studies revealed the high corrosion resistance of the Ti surface coated with the synthesized antibacterial agents without altering its characteristic passive behavior. Owing to the interactions between the charged groups between chitosan and cell surfaces, a slight increase in antibacterial activities was noticed. Chitosan-based coating matrix embedded with nanoagents has adhered well over the Ti surface due to its inherent film-forming and high adhesion properties.


Asunto(s)
Infecciones Bacterianas , Quitosano , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Titanio/farmacología , Titanio/química , Quitosano/química , Staphylococcus aureus , Escherichia coli , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Antibacterianos/farmacología , Antibacterianos/química , Propiedades de Superficie
2.
Materials (Basel) ; 15(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36143507

RESUMEN

Magnesium (Mg) alloys have received increasing interest in the past two decades as biomaterials due to their excellent biological compatibility. However, the corrosion resistance of Mg alloys is relativity low which limits their usage in degradable implant applications, and controlling the corrosion resistance is the key to solving this problem. This review discusses the relative corrosion mechanisms, including pitting, filiform, high temperature, stress corrosion, etc., of Mg alloys. Various approaches like purification (Fe, Ni, Cu, etc.), micro-alloying (adding Zn, Mn, Ca, RE elements, and so on), grain refinement (severe plastic deformation, SPD, etc.), and surface modifications (various coating methods) to control corrosion and biological performance are summarized. Moreover, the in vivo implantations of Mg alloy vascular stents and the issues that have emerged based on the reports in recent years are introduced. It is recommended that corrosion mechanisms should be further investigated as there is no method that can remove all the impurities and a new purification approach needs to be developed. The concentration of micro-alloy elements should be carefully controlled to avoid superfluous compounds. Developing new continuous SPD methods to achieve fine-grained Mg alloys with a large size scale is necessary. The development of a multifunctional coating could also be considered in controlling the Mg degradation rate. Moreover, the research trends and challenges in the future of Mg biomaterials are proposed.

3.
ACS Appl Mater Interfaces ; 14(26): 30315-30323, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35732013

RESUMEN

Plasmonic color printing has received significant attention owing to its advantages such as nonfading and nontoxic color expression, without necessitating the use of chemical dyes. Recently, color generation from laser-induced plasmonic nanostructures has been extensively explored because of its simplicity, cost-effectiveness, and large-scale processability. However, these methods usually utilize a top-down method that causes unexpected background colors. Here, we proposed a novel method of plasmonic color printing via a bottom-up type laser-induced photomodification process. In the proposed method, selective silver nanoparticles (Ag NPs) structure could be fabricated on a transparent substrate through a unique organometallic solution-based laser patterning process. A set of color palettes was formed on the basis of different processing parameters such as laser fluence, scanning speed, and baking time. This color change was verified by finite-difference time-domain (FDTD) simulations via monitoring the spectral peak shift of the localized surface plasmon resonance (LSPR) at Ag NPs. It was also confirmed that the colors can be fabricated at a relatively high scanning speed (≥10 mm/s) on a large substrate (>300 mm2). Since semitransparent color images can be patterned on various transparent substrates, this process will broaden the application range of laser-induced plasmonic color generation.

4.
Small Methods ; 6(5): e2200150, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35388984

RESUMEN

Metal microhoneycomb structures have received considerable attention as a type of interaction-efficient functional devices owing to their unique morphology and material properties. Microhoneycomb structures are mainly fabricated using the well-known breath-figure method. However, additional post-treatments are required to produce a metal structure because it is a polymer-based process, and this necessitates expensive, complex, and multi-step fabrication processes. Therefore, a simple, low-cost metal honeycomb fabrication process is necessary. In this paper, the laser patterning of an organometallic solution to produce silver microhoneycomb (Ag microhoneycomb) structures is proposed. Various phenomena such as rapid organic evaporation, silver nanoparticle solidification, and material reorganization from Marangoni flow are found to enable patterning-induced microhoneycomb formation. Parametric studies demonstrate that the pore size can be easily controlled through simple laser parameter changes. In addition, cyclic voltammetry and electrochemical impedance spectroscopy studies confirm the potential electrochemical applications of the Ag microhoneycomb structures based on the variation of electrochemical redox behavior depending on the pore size. Owing to the excellent advantages of one-step laser patterning without any templates, the proposed process will likely promote the practical use of the metal microhoneycomb structures.

5.
Materials (Basel) ; 11(7)2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-29986456

RESUMEN

A low-alloyed Mg⁻Sn⁻Al⁻Zn system was developed and successfully fabricated through the extrusion process. The dependence of tensile properties and corrosion behavior on microstructural characteristics of the studied alloy has been investigated. After extrusion, the alloy consists of fine dynamically recrystallized (DRXed) grains of ~2.65 μm and strongly textured coarse unDRXed grains. As a consequence, the extruded alloy showed a high-tensile yield strength (YS) of 259 MPa, ultimate tensile strength (UTS) of 297 MPa and elongation (EL) of 19.0%. The strengthening response was discussed in terms of grain size, texture and solutes. The as-extruded alloy presented severe pitting corrosion and the dependence of corrosion properties on the crystallographic orientation and the formation of corrosion products was analyzed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...