RESUMEN
Cross-talk between the microbiome and gut mucosa-resident immune cells plays a pivotal role in modulating immune responses to pathogens, including responses to HIV infection. However, how these interactions may differ between young MSM (YMSM) disproportionately impacted by HIV, as compared to older adult MSM (AMSM), is not well understood. A broad analysis of associations between the microbiome and rectal transcriptome revealed 10 microbial families/genera correlated with immunologic gene pathways. Specifically, the rectal transcriptome of YMSM is characterized by upregulation of T cell activation/differentiation pathways and signaling from multiple cytokine families, compared to AMSM. The microbiome of YMSM is enriched with pathogenic genera including Peptostreptococcus, shown to be positively correlated with type I interferon pathways important for antiviral immunity. These findings demonstrate that YMSM have a unique immune phenotype and rectal microenvironment and support further evaluation of biological factors that influence rectal HIV transmission.
RESUMEN
The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that contribute to unique growth properties and therapeutic susceptibilities. Despite this, pre-clinical strategies designed to exploit growth within the context of invasion are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early 3D invasion phenotypes in different molecular subtypes of KRAS-driven lung adenocarcinoma (LUAD). Combined live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix and transcriptomic profiling identified mutant LKB1-specific upregulation of BMP6. LKB1 loss increased BMP6 signaling, which induced the canonical iron regulatory hormone hepcidin. Intact LKB1 was necessary to maintain BMP6 signaling homeostasis and restrict ALK2/BMP6-fueled growth. Pre-clinical studies in a Kras/Lkb1-mutant syngeneic mouse model and in a xenograft model showed potent growth suppression by inhibiting the ALK2/BMP6 signaling axis with single agent inhibitors that are currently in clinical trials. Lastly, BMP6 expression was elevated in LKB1-mutant early-stage lung cancer patient tumors. These results are consistent with a model where LKB1 acts as a 'brake' to iron regulated growth and suggest that ALK2 inhibition can be used for patients with LKB1-mutant tumors.
RESUMEN
Cytotoxic T lymphocytes (CTLs) mediate host defense against viral and intracellular bacterial infections and tumors. However, the magnitude of CTL response and their function needed to confer heterosubtypic immunity against influenza virus infection are unknown. We addressed the role of CD8+ T cells in the absence of any cross-reactive antibody responses to influenza viral proteins using an adenoviral vector expressing a 9mer amino acid sequence recognized by CD8+ T cells. Our results indicate that both CD8+ T cell frequency and function are crucial for heterosubtypic immunity. Low morbidity, lower viral lung titers, low to minimal lung pathology, and better survival upon heterosubtypic virus challenge correlated with the increased frequency of NP-specific CTLs. NP-CD8+ T cells induced by differential infection doses displayed distinct RNA transcriptome profiles and functional properties. CD8+ T cells induced by a high dose of influenza virus secreted significantly higher levels of IFN-γ and exhibited higher levels of cytotoxic function. The mice that received NP-CD8+ T cells from the high-dose virus recipients through adoptive transfer had lower viral titers following viral challenge than those induced by the low dose of virus, suggesting differential cellular programming by antigen dose. Enhanced NP-CD8+ T-cell functions induced by a higher dose of influenza virus strongly correlated with the increased expression of cellular and metabolic genes, indicating a shift to a more glycolytic metabolic phenotype. These findings have implications for developing effective T cell vaccines against infectious diseases and cancer. IMPORTANCE: Cytotoxic T lymphocytes (CTLs) are an important component of the adaptive immune system that clears virus-infected cells or tumor cells. Hence, developing next-generation vaccines that induce or recall CTL responses against cancer and infectious diseases is crucial. However, it is not clear if the frequency, function, or both are essential in conferring protection, as in the case of influenza. In this study, we demonstrate that both CTL frequency and function are crucial for providing heterosubtypic immunity to influenza by utilizing an Ad-viral vector expressing a CD8 epitope only to rule out the role of antibodies, single-cell RNA-seq analysis, as well as adoptive transfer experiments. Our findings have implications for developing T cell vaccines against infectious diseases and cancer.
Asunto(s)
Linfocitos T CD8-positivos , Infecciones por Orthomyxoviridae , Linfocitos T Citotóxicos , Animales , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T Citotóxicos/inmunología , Ratones Endogámicos C57BL , Femenino , Traslado Adoptivo , Interferón gamma/inmunología , Interferón gamma/metabolismo , Proteínas de la Nucleocápside/inmunología , Pulmón/inmunología , Pulmón/virología , Proteínas de Unión al ARN/inmunología , Proteínas de Unión al ARN/genética , Nucleoproteínas/inmunología , Nucleoproteínas/genética , Proteínas del Núcleo Viral/inmunología , Proteínas del Núcleo Viral/genéticaRESUMEN
The CRISPR-Cas13 system has been proposed as an alternative treatment of viral infections. However, for this approach to be adopted as an antiviral, it must be optimized until levels of efficacy rival or exceed the performance of conventional approaches. To take steps toward this goal, we evaluated the influenza viral RNA degradation patterns resulting from the binding and enzymatic activity of mRNA-encoded LbuCas13a and two crRNAs from a prior study, targeting PB2 genomic and messenger RNA. We found that the genome targeting guide has the potential for significantly higher potency than originally detected, because degradation of the genomic RNA is not uniform across the PB2 segment, but it is augmented in proximity to the Cas13 binding site. The PB2 genome targeting guide exhibited high levels (>1 log) of RNA degradation when delivered 24 hours post-infection in vitro and maintained that level of degradation over time, with increasing multiplicity of infection (MOI), and across modern influenza H1N1 and H3N2 strains. Chemical modifications to guides with potent LbuCas13a function, resulted in nebulizer delivered efficacy (>1-2 log reduction in viral titer) in a hamster model of influenza (Influenza A/H1N1/California/04/09) infection given prophylactically or as a treatment (post-infection). Maximum efficacy was achieved with two doses, when administered both pre- and post-infection. This work provides evidence that mRNA-encoded Cas13a can effectively mitigate Influenza A infections opening the door to the development of a programmable approach to treating multiple respiratory infections.
Asunto(s)
Sistemas CRISPR-Cas , Gripe Humana , Estabilidad del ARN , ARN Mensajero , ARN Viral , Animales , ARN Viral/genética , ARN Viral/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Humanos , Gripe Humana/virología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Antivirales/farmacología , Perros , Cricetinae , Proteínas Virales/genética , Proteínas Virales/metabolismo , Mesocricetus , Células de Riñón Canino Madin DarbyRESUMEN
Dengue is a major global health threat, and there are no approved antiviral agents. Prior research using Cas13 only demonstrated dengue mitigation in vitro. Here we demonstrate that systemic delivery of mRNA-encoded Cas13a and guide RNAs formulated in lipid nanoparticles can be used to treat dengue virus (DENV) 2 and 3 in mice. First, we identified guides against DENV 2 and 3 that demonstrated in vitro efficacy. Next, we confirmed that Cas13 enzymatic activity is necessary for DENV 2 or DENV 3 mitigation in vitro. Last, we show that a single dose of lipid-nanoparticle-formulated mRNA-encoded Cas13a and guide RNA, administered 1 day post-infection, promotes survival of all infected animals and serum viral titre decreases on days 2 and 3 post-infection after lethal challenge in mice. Off-target analysis in mice using RNA sequencing showed no collateral cleavage. Overall, these data demonstrate the potential of mRNA-encoded Cas13 as a pan-DENV drug.
Asunto(s)
Antivirales , Virus del Dengue , Dengue , Modelos Animales de Enfermedad , Nanopartículas , ARN Mensajero , Animales , Dengue/tratamiento farmacológico , Ratones , Virus del Dengue/genética , Virus del Dengue/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nanopartículas/química , Antivirales/farmacología , Antivirales/administración & dosificación , ARN Guía de Sistemas CRISPR-Cas/genética , Humanos , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Lípidos/química , Carga Viral/efectos de los fármacos , Femenino , LiposomasRESUMEN
Phenotypic heterogeneity poses a significant hurdle for cancer treatment but is under-characterized in the context of tumor invasion. Amidst the range of phenotypic heterogeneity across solid tumor types, collectively invading cells and single cells have been extensively characterized as independent modes of invasion, but their intercellular interactions have rarely been explored. Here, we isolated collectively invading cells and single cells from the heterogeneous 4T1 cell line and observed extensive transcriptional and epigenetic diversity across these subpopulations. By integrating these datasets, we identified laminin-332 as a protein complex exclusively secreted by collectively invading cells. Live-cell imaging revealed that laminin-332 derived from collectively invading cells increased the velocity and directionality of single cells. Despite collectively invading and single cells having similar expression of the integrin α6ß4 dimer, single cells demonstrated higher Rac1 activation upon laminin-332 binding to integrin α6ß4. This mechanism suggests a novel commensal relationship between collectively invading and single cells, wherein collectively invading cells promote the invasive potential of single cells through a laminin-332/Rac1 axis.
Asunto(s)
Laminina , Proteína de Unión al GTP rac1 , Humanos , Movimiento Celular , Integrina alfa6beta4/genética , Kalinina , Laminina/genética , Laminina/metabolismo , Neoplasias/genética , Simbiosis , Animales , Ratones , Línea Celular Tumoral , Proteína de Unión al GTP rac1/metabolismoRESUMEN
While SARS-CoV-2 vaccines have shown strong efficacy, their suboptimal uptake combined with the continued emergence of new viral variants raises concerns about the ongoing and future public health impact of COVID-19. We investigated viral and host factors, including vaccination status, that were associated with SARS-CoV-2 disease severity in a setting with low vaccination rates. We analyzed clinical and demographic data from 1,957 individuals in the state of Georgia, USA, coupled with viral genome sequencing from 1,185 samples. We found no difference in disease severity between individuals infected with Delta and Omicron variants among the participants in this study, after controlling for other factors, and we found no specific mutations associated with disease severity. Compared to those who were unvaccinated, vaccinated individuals experienced less severe SARS-CoV-2 disease, and the effect was similar for both variants. Vaccination within 270 days before infection was associated with decreased odds of moderate and severe outcomes, with the strongest association observed at 91-270 days post-vaccination. Older age and underlying health conditions, especially immunosuppression and renal disease, were associated with increased disease severity. Overall, this study provides insights into the impact of vaccination status, variants/mutations, and clinical factors on disease severity in SARS-CoV-2 infection when vaccination rates are low. Understanding these associations will help refine and reinforce messaging around the crucial importance of vaccination in mitigating the severity of SARS-CoV-2 disease.
RESUMEN
The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that likely contribute to unique growth properties and therapeutic susceptibilities. Despite this, pre-clinical discovery strategies designed to exploit invasive phenotypes are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early invasion phenotypes in the two most prominent molecular subtypes, TP53 and LKB1, of KRAS-driven lung adenocarcinoma (LUAD). By combining live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix with RNA transcriptome profiling, we identified the LKB1-specific upregulation of bone morphogenetic protein 6 (BMP6). Examination of early-stage lung cancer patients confirmed upregulation of BMP6 in LKB1-mutant lung tumors. At the molecular level, we find that the canonical iron regulatory hormone Hepcidin is induced via BMP6 signaling upon LKB1 loss, where intact LKB1 kinase activity is necessary to maintain signaling homeostasis. Furthermore, pre-clinical studies in a novel Kras/Lkb1-mutant syngeneic mouse model show that potent growth suppression was achieved by inhibiting the ALK2/BMP6 signaling axis with single agents that are currently in clinical trials. We show that alterations in the iron homeostasis pathway are accompanied by simultaneous upregulation of ferroptosis protection proteins. Thus, LKB1 is sufficient to regulate both the 'gas' and 'breaks' to finely tune iron-regulated tumor progression.
RESUMEN
Young men who have sex with men (YMSM) are disproportionately affected by HIV and bacterial sexually transmitted infections (STI) including gonorrhea, chlamydia, and syphilis; yet research into the immunologic effects of these infections is typically pursued in siloes. Here, we employed a syndemic approach to understand potential interactions of these infections on the rectal mucosal immune environment among YMSM. We enrolled YMSM aged 18-29 years with and without HIV and/or asymptomatic bacterial STI and collected blood, rectal secretions, and rectal tissue biopsies. YMSM with HIV were on suppressive antiretroviral therapy (ART) with preserved blood CD4 cell counts. We defined 7 innate and 19 adaptive immune cell subsets by flow cytometry, the rectal mucosal transcriptome by RNAseq, and the rectal mucosal microbiome by 16S rRNA sequencing and examined the effects of HIV and STI and their interactions. We measured tissue HIV RNA viral loads among YMSM with HIV and HIV replication in rectal explant challenge experiments among YMSM without HIV. HIV, but not asymptomatic STI, was associated with profound alterations in the cellular composition of the rectal mucosa. We did not detect a difference in the microbiome composition associated with HIV, but asymptomatic bacterial STI was associated with a higher probability of presence of potentially pathogenic taxa. When examining the rectal mucosal transcriptome, there was evidence of statistical interaction; asymptomatic bacterial STI was associated with upregulation of numerous inflammatory genes and enrichment for immune response pathways among YMSM with HIV, but not YMSM without HIV. Asymptomatic bacterial STI was not associated with differences in tissue HIV RNA viral loads or in HIV replication in explant challenge experiments. Our results suggest that asymptomatic bacterial STI may contribute to inflammation particularly among YMSM with HIV, and that future research should examine potential harms and interventions to reduce the health impact of these syndemic infections.
Asunto(s)
Infecciones por Chlamydia , Gonorrea , Infecciones por VIH , Minorías Sexuales y de Género , Enfermedades de Transmisión Sexual , Masculino , Humanos , Enfermedades de Transmisión Sexual/complicaciones , Enfermedades de Transmisión Sexual/diagnóstico , Enfermedades de Transmisión Sexual/terapia , Homosexualidad Masculina , ARN Ribosómico 16S , Infecciones por Chlamydia/complicaciones , Infecciones por VIH/complicaciones , Gonorrea/epidemiologíaRESUMEN
We performed an epidemiological investigation and genome sequencing of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) to define the source and scope of an outbreak in a cluster of hospitalized patients. Lack of appropriate respiratory hygiene led to SARS-CoV-2 transmission to patients and healthcare workers during a single hemodialysis session, highlighting the importance of infection prevention precautions.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Brotes de Enfermedades , Diálisis Renal/efectos adversos , GenómicaRESUMEN
Young men who have sex with men (YMSM) represent a particularly high-risk group for HIV acquisition in the US, despite similarly reported rates of sexual activity as older, adult MSM (AMSM). Increased rates of HIV infection among YMSM compared to AMSM could be partially attributable to differences within the rectal mucosal (RM) immune environment associated with earlier sexual debut and less lifetime exposure to receptive anal intercourse. Using an ex vivo explant HIV challenge model, we found that rectal tissues from YMSM supported higher levels of p24 at peak viral replication timepoints compared to AMSM. Among YMSM, the RM was characterized by increased CD4+ T cell proliferation, as well as lower frequencies of tissue resident CD8+ T cells and pro-inflammatory cytokine producing CD4+ and CD8+ T cells. In addition, the microbiome composition of YMSM was enriched for anaerobic taxa that have previously been associated with HIV acquisition risk, including Prevotella, Peptostreptococcus, and Peptoniphilus. These distinct immunologic and microbiome characteristics were found to be associated with higher HIV replication following ex vivo challenge of rectal explants, suggesting the RM microenvironment of YMSM may be uniquely conducive to HIV infection.
Asunto(s)
Infecciones por VIH , Minorías Sexuales y de Género , Adulto , Masculino , Humanos , Homosexualidad Masculina , Conducta Sexual , Membrana MucosaRESUMEN
We describe rapid detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant using targeted spike single-nucleotide polymorphism polymerase chain reaction and viral genome sequencing. This case occurred in a fully vaccinated and boosted returning traveler with mild symptoms who was identified through community surveillance rather than clinical care.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genoma Viral , Humanos , Reacción en Cadena de la Polimerasa , SARS-CoV-2/genéticaRESUMEN
Adenosine-to-inosine (A-to-I) editing is a conserved eukaryotic RNA modification that contributes to development, immune response, and overall cellular function. Here, we utilize Endonucleaseâ V (EndoV), which binds specifically to inosine in RNA, to develop an EndoV-linked immunosorbency assay (EndoVLISA) as a rapid, plate-based chemiluminescent method for measuring global A-to-I editing signatures in cellular RNA. We first optimize and validate our assay with chemically synthesized oligonucleotides. We then demonstrate rapid detection of inosine content in treated cell lines, demonstrating equivalent performance against current standard RNA-seq approaches. Lastly, we deploy our EndoVLISA for profiling differential A-to-I RNA editing signatures in normal and diseased human tissue, illustrating the utility of our platform as a diagnostic bioassay. Together, the EndoVLISA method is cost-effective, straightforward, and utilizes common laboratory equipment, offering a highly accessible new approach for studying A-to-I editing. Moreover, the multi-well plate format makes this the first assay amenable for direct high-throughput quantification of A-to-I editing for applications in disease detection and drug development.
Asunto(s)
Adenosina/química , Inosina/química , Mediciones Luminiscentes , ARN/análisis , Humanos , Edición de ARNRESUMEN
Creating accurate maps of A-to-I RNA editing activity is vital to improving our understanding of the biological role of this process and harnessing it as a signal for disease diagnosis. Current RNA sequencing techniques are susceptible to random sampling limitations due to the complexity of the transcriptome and require large amounts of RNA material, specialized instrumentation, and high read counts to accurately interrogate A-to-I editing sites. To address these challenges, we show that Escherichia coli Endonuclease V (eEndoV), an inosine-cleaving enzyme, can be repurposed to bind and isolate A-to-I edited transcripts from cellular RNA. While Mg2+ enables eEndoV to catalyze RNA cleavage, we show that similar levels of Ca2+ instead promote binding of inosine without cleavage and thus enable high affinity capture of inosine in RNA. We leverage this capability to demonstrate EndoVIPER-seq (Endonuclease V inosine precipitation enrichment sequencing) as a facile and effective method to enrich A-to-I edited transcripts prior to RNA-seq, producing significant increases in the coverage and detection of identified editing sites. We envision the use of this approach as a straightforward and cost-effective strategy to improve the epitranscriptomic informational density of RNA samples, facilitating a deeper understanding of the functional roles of A-to-I editing.
Asunto(s)
Desoxirribonucleasa (Dímero de Pirimidina)/química , Inosina/química , Edición de ARN , ARN Mensajero/química , Calcio/química , Escherichia coli/enzimología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ARN/métodosRESUMEN
Kroppenstedtia sanguinis X0209T, a thermoactinomycete, was isolated from the blood of a patient in Sweden. We report on the draft genome sequence obtained with an Illumina MiSeq instrument. The assembled genome totaled 3.73 Mb and encoded 3,583 proteins. Putative genes for virulence, transposons, and biosynthetic gene clusters have been identified.
RESUMEN
The complete genome sequence of the Nocardia farcinica type strain was obtained by combining Illumina HiSeq and PacBio reads, producing a single 6.29-Mb chromosome and 2 circular plasmids. Bioinformatic analysis identified 5,991 coding sequences, including putative genes for virulence, microbial resistance, transposons, and biosynthesis gene clusters.
RESUMEN
Streptacidiphilus sp. strain 15-057A was isolated from a bronchial lavage sample and represents the only member of the genus not isolated from acidic soils. A single circular chromosome of 7.01 Mb was obtained by combining Illumina and PacBio sequencing data. Bioinformatic analysis detected 63 putative secondary biosynthetic gene clusters and recognized 43 transposons.
RESUMEN
Genome comparisons provide information on the nature of genetic change, but such comparisons are challenged to differentiate the importance of the actual sequence change processes relative to the role of selection. This problem can be overcome by identifying changes that have not yet had the time to undergo millions of years of natural selection. We describe a strategy to discover accession-specific changes in the rice genome using an abundant resource routinely provided for many genome analyses, resequencing data. The sequence of the fully sequenced rice genome from variety Nipponbare was compared to the pooled (â¼114×) resequencing data from 126 japonica rice accessions to discover "Nipponbare-specific" sequences. Analyzing nonrepetitive sequences, 8504 "candidate" Nipponbare-specific changes were detected, of which around two-thirds are true novel sequence changes and the rest are predicted genome sequencing errors. Base substitutions outnumbered indels in this data set by > 28:1, with â¼8:5 bias toward transversions over transitions, and no transposable element insertions or excisions were observed. These results indicate that the strategy employed is effective for finding recent sequence changes, sequencing errors, and rare alleles in any organism that has both a reference genome sequence and a wealth of resequencing data.
Asunto(s)
Genoma de Planta , Oryza/genética , Secuenciación Completa del Genoma/normas , Alelos , Elementos Transponibles de ADN , Mutación INDEL , Estándares de ReferenciaRESUMEN
We report the first whole-genome sequences for five strains, two carried and three pathogenic, of the emerging pathogen Haemophilus haemolyticus. Preliminary analyses indicate that these genome sequences encode markers that distinguish H. haemolyticus from its closest Haemophilus relatives and provide clues to the identity of its virulence factors.