Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Brain ; 15(1): 56, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715811

RESUMEN

Hippocampal CA1 parvalbumin-expressing interneurons (PV INs) play a central role in controlling principal cell activity and orchestrating network oscillations. PV INs receive excitatory inputs from CA3 Schaffer collaterals and local CA1 pyramidal cells, and they provide perisomatic inhibition. Schaffer collateral excitatory synapses onto PV INs express Hebbian and anti-Hebbian types of long-term potentiation (LTP), as well as elicit LTP of intrinsic excitability (LTPIE). LTPIE requires the activation of type 5 metabotropic glutamate receptors (mGluR5) and is mediated by downregulation of potassium channels Kv1.1. It is sensitive to rapamycin and thus may involve activation of the mammalian target of rapamycin complex 1 (mTORC1). LTPIE facilitates PV INs recruitment in CA1 and maintains an excitatory-inhibitory balance. Impaired CA1 PV INs activity or LTP affects network oscillations and memory. However, whether LTPIE in PV INs plays a role in hippocampus-dependent memory remains unknown. Here, we used conditional deletion of the obligatory component of mTORC1, the Regulatory-Associated Protein of mTOR (Raptor), to directly manipulate mTORC1 in PV INs. We found that homozygous, but not heterozygous, conditional knock-out of Rptor resulted in a decrease in CA1 PV INs of mTORC1 signaling via its downstream effector S6 phosphorylation assessed by immunofluorescence. In whole-cell recordings from hippocampal slices, repetitive firing of CA1 PV INs was impaired in mice with either homozygous or heterozygous conditional knock-out of Rptor. High frequency stimulation of Schaffer collateral inputs that induce LTPIE in PV INs of control mice failed to do so in mice with either heterozygous or homozygous conditional knock-out of Rptor in PV INs. At the behavioral level, mice with homozygous or heterozygous conditional knock-out of Rptor showed similar long-term contextual fear memory or contextual fear memory discrimination relative to control mice. Thus, mTORC1 activity in CA1 PV INs regulates repetitive firing and LTPIE but not consolidation of long-term contextual fear memory and context discrimination. Our results indicate that mTORC1 plays cell-specific roles in synaptic plasticity of hippocampal inhibitory interneurons that are differentially involved in hippocampus-dependent learning and memory.


Asunto(s)
Región CA1 Hipocampal , Miedo , Hipocampo , Interneuronas , Potenciación a Largo Plazo , Diana Mecanicista del Complejo 1 de la Rapamicina , Memoria , Parvalbúminas , Animales , Región CA1 Hipocampal/metabolismo , Miedo/fisiología , Hipocampo/metabolismo , Interneuronas/metabolismo , Potenciación a Largo Plazo/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Memoria/fisiología , Ratones , Parvalbúminas/metabolismo , Sinapsis/metabolismo
2.
Mol Autism ; 11(1): 29, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375878

RESUMEN

BACKGROUND: Mutations in TSC1 or TSC2 genes cause tuberous sclerosis complex (TSC), a disorder associated with epilepsy, autism, and intellectual disability. TSC1 and TSC2 are repressors of the mechanistic target of rapamycin complex 1 (mTORC1), a key regulator of protein synthesis. Dysregulation of mTORC1 in TSC mouse models leads to impairments in excitation-inhibition balance, synaptic plasticity, and hippocampus-dependent learning and memory deficits. However, synaptic inhibition arises from multiple types of inhibitory interneurons and how changes in specific interneurons contribute to TSC remains largely unknown. In the present work, we determined the effect of conditional Tsc1 haploinsufficiency in a specific subgroup of inhibitory cells on hippocampal function in mice. METHODS: We investigated the consequences of conditional heterozygous knockout of Tsc1 in MGE-derived inhibitory cells by crossing Nkx2.1Cre/wt;Tsc1f/f mice. We examined the changes in mTORC1 activity and synaptic transmission in hippocampal cells, as well as hippocampus-related cognitive tasks. RESULTS: We detected selective increases in phosphorylation of ribosomal protein S6 in interneurons, indicating cell-specific-upregulated mTORC1 signaling. At the behavioral level, Nkx2.1Cre/wt;Tsc1f/wt mice exhibited intact contextual fear memory, but impaired contextual fear discrimination. They displayed intact spatial learning and reference memory but impairment in spatial working memory. Whole-cell recordings in hippocampal slices of Nkx2.1Cre/wt;Tsc1f/wt mice showed intact basic membrane properties, as well as miniature excitatory and inhibitory synaptic transmission, in pyramidal and Nkx2.1-expressing inhibitory cells. Using optogenetic activation of Nkx2.1 interneurons in slices of Nkx2.1Cre/wt;Tsc1f/wt mice, we found a decrease in synaptic inhibition of pyramidal cells. Chronic, but not acute treatment, with the mTORC1 inhibitor rapamycin reversed the impairment in synaptic inhibition. CONCLUSIONS: Our results indicate that Tsc1 haploinsufficiency in MGE-derived inhibitory cells upregulates mTORC1 activity in these interneurons, reduces their synaptic inhibition of pyramidal cells, and alters contextual fear discrimination and spatial working memory. Thus, selective dysregulation of mTORC1 function in Nkx2.1-expressing inhibitory cells appears sufficient to impair synaptic inhibition and contributes to cognitive deficits in the Tsc1 mouse model of TSC.


Asunto(s)
Miedo , Haploinsuficiencia , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Memoria a Corto Plazo , Células Piramidales/metabolismo , Transmisión Sináptica/genética , Factor Nuclear Tiroideo 1/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Heterocigoto , Interneuronas , Masculino , Ratones , Ratones Noqueados , Factor Nuclear Tiroideo 1/metabolismo
3.
J Neurosci ; 39(43): 8439-8456, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31519824

RESUMEN

Translational control of long-term synaptic plasticity via Mechanistic Target Of Rapamycin Complex 1 (mTORC1) is crucial for hippocampal learning and memory. The role of mTORC1 is well characterized in excitatory principal cells but remains largely unaddressed in inhibitory interneurons. Here, we used cell-type-specific conditional knock-out strategies to alter mTORC1 function selectively in somatostatin (SOM) inhibitory interneurons (SOM-INs). We found that, in male mice, upregulation and downregulation of SOM-IN mTORC1 activity bidirectionally regulates contextual fear and spatial memory consolidation. Moreover, contextual fear learning induced a metabotropic glutamate receptor type 1 (mGluR1)-mediated late long-term potentiation (LTP) of excitatory input synapses onto hippocampal SOM-INs that was dependent on mTORC1. Finally, the induction protocol for mTORC1-mediated late-LTP in SOM-INs regulated Schaffer collateral pathway LTP in pyramidal neurons. Therefore, mTORC1 activity in somatostatin interneurons contributes to learning-induced persistent plasticity of their excitatory synaptic inputs and hippocampal memory consolidation, uncovering a role of mTORC1 in inhibitory circuits for memory.SIGNIFICANCE STATEMENT Memory consolidation necessitates synthesis of new proteins. Mechanistic Target Of Rapamycin Complex 1 (mTORC1) signaling is crucial for translational control involved in long-term memory and in late long-term potentiation (LTP). This is well described in principal glutamatergic pyramidal cells but poorly understood in GABAergic inhibitory interneurons. Here, we show that mTORC1 activity in somatostatin interneurons, a major subclass of GABAergic cells, is important to modulate long-term memory strength and precision. Furthermore, mTORC1 was necessary for learning-induced persistent LTP at excitatory inputs of somatostatin interneurons that depends on type I metabotropic glutamatergic receptors in the hippocampus. This effect was consistent with a newly described role of these interneurons in the modulation of LTP at Schaffer collateral synapses onto pyramidal cells.


Asunto(s)
Hipocampo/metabolismo , Interneuronas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Memoria/fisiología , Somatostatina/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo
4.
Brain Res Bull ; 141: 20-26, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29174732

RESUMEN

Neural circuit functions involve finely controlled excitation/inhibition interactions that allow complex neuronal computations and support high order brain functions such as learning and memory. Disinhibition, defined as a transient brake on inhibition that favors excitation, recently appeared to be a conserved circuit mechanism implicated in various functions such as sensory processing, learning and memory. Although vasoactive intestinal polypeptide (VIP) interneurons are considered to be the main disinhibitory cells, recent studies highlighted a pivotal role of somatostatin (SOM) interneurons in inhibiting GABAergic interneurons and promoting principal cell activation. Interestingly, long-term potentiation of excitatory input synapses onto hippocampal SOM interneurons is proposed as a lasting mechanism for regulation of disinhibition of principal neurons. Such regulation of network metaplasticity may be important for hippocampal-dependent learning and memory.


Asunto(s)
Interneuronas/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Animales , Encéfalo/fisiología , Inhibición Neural/fisiología , Vías Nerviosas/fisiología , Somatostatina/metabolismo
5.
eNeuro ; 2(4)2015.
Artículo en Inglés | MEDLINE | ID: mdl-26464997

RESUMEN

Cortical GABAergic interneurons represent a highly diverse neuronal type that regulates neural network activity. In particular, interneurons in the hippocampal CA1 oriens/alveus (O/A-INs) area provide feedback dendritic inhibition to local pyramidal cells and express somatostatin (SOM). Under relevant afferent stimulation patterns, they undergo long-term potentiation (LTP) of their excitatory synaptic inputs through multiple induction and expression mechanisms. However, the cell-type specificity of these different forms of LTP and their specific contribution to the dynamic regulation of the CA1 network remain unclear. Here we recorded from SOM-expressing interneurons (SOM-INs) in the O/A region from SOM-Cre-Ai3 transgenic mice in whole-cell patch-clamp. Results indicate that, like in anatomically identified O/A-INs, theta-burst stimulation (TBS) induced a Hebbian form of LTP dependent on metabotropic glutamate receptor type 1a (mGluR1a) in SOM-INs, but not in parvalbumin-expressing interneurons, another mainly nonoverlapping interneuron subtype in CA1. In addition, we demonstrated using field recordings from transgenic mice expressing archaerhodopsin 3 selectively in SOM-INs, that a prior conditioning TBS in O/A, to induce mGluR1a-dependent LTP in SOM-INs, upregulated LTP in the Schaffer collateral pathway of pyramidal cells. This effect was prevented by light-induced hyperpolarization of SOM-INs during TBS, or by application of the mGluR1a antagonist LY367385, indicating a necessity for mGluR1a and SOM-INs activation. These results uncover that SOM-INs perform an activity-dependent metaplastic control on hippocampal CA1 microcircuits in a cell-specific fashion. Our findings provide new insights on the contribution of interneuron synaptic plasticity in the regulation of the hippocampal network activity and mnemonic processes.

6.
Ann Neurol ; 77(4): 592-606, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25583290

RESUMEN

OBJECTIVE: Patients with temporal lobe epilepsy often display cognitive comorbidity with recurrent seizures. However, the cellular mechanisms underlying the impairment of neuronal information processing remain poorly understood in temporal lobe epilepsy. Within the hippocampal formation neuronal networks undergo major reorganization, including the sprouting of mossy fibers in the dentate gyrus; they establish aberrant recurrent synapses between dentate granule cells and operate via postsynaptic kainate receptors. In this report, we tested the hypothesis that this aberrant local circuit alters information processing of perforant path inputs constituting the major excitatory afferent pathway from entorhinal cortex to dentate granule cells. METHODS: Experiments were performed in dentate granule cells from control rats and rats with temporal lobe epilepsy induced by pilocarpine hydrochloride treatment. Neurons were recorded in patch clamp in whole cell configuration in hippocampal slices. RESULTS: Our present data revealed that an aberrant readout of synaptic inputs by kainate receptors triggered a long-lasting impairment of the perforant path input-output operation in epileptic dentate granule cells. We demonstrated that this is due to the aberrant activity-dependent potentiation of the persistent sodium current altering intrinsic firing properties of dentate granule cells. INTERPRETATION: We propose that this aberrant activity-dependent intrinsic plasticity, which lastingly impairs the information processing of cortical inputs in dentate gyrus, may participate in hippocampal-related cognitive deficits, such as those reported in patients with epilepsy.


Asunto(s)
Giro Dentado/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Plasticidad Neuronal , Neuronas , Animales , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
7.
Learn Mem ; 21(6): 316-24, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25171423

RESUMEN

Reconsolidation is necessary for the restabilization of reactivated memory traces. However, experimental parameters have been suggested as boundary conditions for this process. Here we investigated the role of a spatial memory trace's age, strength, and update on the reconsolidation process in mice. We first found that protein synthesis is necessary for reconsolidation to occur in the hippocampal CA3 region after reactivation of partially acquired and old memories but not for strongly acquired and recent memories. We also demonstrated that the update of a previously stable memory required, again, a memory reconsolidation in the hippocampal CA3. Finally, we found that the reactivation of a strongly acquired memory requires an activation of the anterior cingulate cortex as soon as 24 h after acquisition. This study demonstrates the importance of the knowledge of the task on the dynamic nature of memory reconsolidation processing.


Asunto(s)
Región CA3 Hipocampal/fisiología , Giro del Cíngulo/fisiología , Recuerdo Mental/fisiología , Memoria Espacial/fisiología , Animales , Anisomicina/farmacología , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/metabolismo , Giro del Cíngulo/efectos de los fármacos , Giro del Cíngulo/metabolismo , Masculino , Recuerdo Mental/efectos de los fármacos , Ratones , Inhibidores de la Síntesis de la Proteína/farmacología , Memoria Espacial/efectos de los fármacos
8.
Cereb Cortex ; 23(2): 323-31, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22345355

RESUMEN

Progress in understanding the roles of kainate receptors (KARs) in synaptic integration, synaptic networks, and higher brain function has been hampered by the lack of selective pharmacological tools. We have found that UBP310 and related willardiine derivatives, previously characterized as selective GluK1 and GluK3 KAR antagonists, block postsynaptic KARs at hippocampal mossy fiber (MF) CA3 synapses while sparing AMPA and NMDA receptors. We further show that UBP310 is an antagonist of recombinant GluK2/GluK5 receptors, the major population of KARs in the brain. Postsynaptic KAR receptor blockade at MF synapses significantly reduces the sustained depolarization, which builds up during repetitive activity, and impacts on spike transmission mediated by heterosynaptic signals. In addition, KARs present in aberrant MF synapses in the epileptic hippocampus were also blocked by UBP310. Our results support a specific role for postsynaptic KARs in synaptic integration of CA3 pyramidal cells and describe a tool that will be instrumental in understanding the physiopathological role of KARs in the brain.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Fibras Musgosas del Hipocampo/fisiología , Receptores de Ácido Kaínico/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Ratas , Ratas Wistar
9.
J Neurosci ; 31(30): 10811-8, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21795533

RESUMEN

Dentate granule cells, at the gate of the hippocampus, use coincidence detection of synaptic inputs to code afferent information under a sparse firing regime. In both human patients and animal models of temporal lobe epilepsy, mossy fibers sprout to form an aberrant glutamatergic network between dentate granule cells. These new synapses operate via long-lasting kainate receptor-mediated events, which are not present in the naive condition. Here, we report that in chronic epileptic rat, aberrant kainate receptors in interplay with the persistent sodium current dramatically expand the temporal window for synaptic integration. This introduces a multiplicative gain change in the input-output operation of dentate granule cells. As a result, their sparse firing is switched to an abnormal sustained and rhythmic mode. We conclude that synaptic kainate receptors dramatically alter the fundamental coding properties of dentate granule cells in temporal lobe epilepsy.


Asunto(s)
Potenciales de Acción/fisiología , Giro Dentado/patología , Epilepsia del Lóbulo Temporal/patología , Neuronas/fisiología , Receptores de Ácido Kaínico/metabolismo , Canales de Sodio/fisiología , Sinapsis/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Biofisica , Modelos Animales de Enfermedad , Estimulación Eléctrica , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Wistar , Bloqueadores de los Canales de Sodio/farmacología , Sinapsis/efectos de los fármacos , Tetrodotoxina/farmacología
10.
Eur J Neurosci ; 27(11): 3009-19, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18588539

RESUMEN

The formation of long-term memory requires protein synthesis, particularly during initial memory consolidation. This process also seems to be dependant upon protein degradation, particularly degradation by the ubiquitin-proteasome system. The aim of this study was to investigate the temporal requirement of protein synthesis and degradation during the initial consolidation of allocentric spatial learning. As memory returns to a labile state during reactivation, we also focus on the role of protein synthesis and degradation during memory reconsolidation of this spatial learning. Male CD1 mice were submitted to massed training in the spatial version of the Morris water maze. At various time intervals after initial acquisition or after a reactivation trial taking place 24 h after acquisition, mice received an injection of either the protein synthesis inhibitor anisomycin or the protein degradation inhibitor lactacystin. This injection was performed into the hippocampal CA3 region, which is specifically implicated in the processing of spatial information. Results show that, in the CA3 hippocampal region, consolidation of an allocentric spatial learning task requires two waves of protein synthesis taking place immediately and 4 h after acquisition, whereas reconsolidation requires only the first wave. However, for protein degradation, both consolidation and reconsolidation require only one wave, taking place immediately after acquisition or reactivation, respectively. These findings suggest that protein degradation is a key step for memory reconsolidation, as for consolidation. Moreover, as protein synthesis-dependent reconsolidation occurred faster than consolidation, reconsolidation did not consist of a simple repetition of the initial consolidation.


Asunto(s)
Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Proteínas del Tejido Nervioso/metabolismo , Percepción Espacial/fisiología , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Animales , Anisomicina/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Percepción Espacial/efectos de los fármacos
11.
Hippocampus ; 17(3): 181-91, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17294462

RESUMEN

Our understanding of the memory reconsolidation process is at an earlier stage than that of consolidation. For example, it is unclear if, as for memory consolidation, reconsolidation of a memory trace necessitates protein synthesis. In fact, conflicting results appear in the literature and this discrepancy may be due to differences in the experimental reactivation procedure. Here, we addressed the question of whether protein synthesis in the CA3 hippocampal region is crucial in memory consolidation and reconsolidation of allocentric knowledge after reactivation in different experimental conditions in the Morris water maze. We showed (1) that an injection of the protein synthesis inhibitor anisomycin in the CA3 region during consolidation or after a single reactivation trial disrupted performance and (2) that protein synthesis is required even after a simple contextual reactivation without any learning trial and independently of the presence of the reinforcement. This work demonstrates that a simple exposure to the spatial environment is sufficient to reactivate the memory trace, to make it labile, and that reconsolidation of this trace requires de novo protein synthesis.


Asunto(s)
Hipocampo/metabolismo , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Percepción Espacial/fisiología , Animales , Ambiente Controlado , Hipocampo/anatomía & histología , Hipocampo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Ratones , Orientación/efectos de los fármacos , Orientación/fisiología , Inhibidores de la Síntesis de la Proteína/efectos adversos , Reconocimiento en Psicología/fisiología , Refuerzo en Psicología , Percepción Espacial/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...