Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(24): 24936-24946, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38096422

RESUMEN

Remote and genetically targeted neuromodulation in the deep brain is important for understanding and treatment of neurological diseases. Ultrasound-triggered mechanoluminescent technology offers a promising approach for achieving remote and genetically targeted brain modulation. However, its application has thus far been limited to shallow brain depths due to challenges related to low sonochemical reaction efficiency and restricted photon yields. Here we report a cascaded mechanoluminescent nanotransducer to achieve efficient light emission upon ultrasound stimulation. As a result, blue light was generated under ultrasound stimulation with a subsecond response latency. Leveraging the high energy transfer efficiency of focused ultrasound in brain tissue and the high sensitivity to ultrasound of these mechanoluminescent nanotransducers, we are able to show efficient photon delivery and activation of ChR2-expressing neurons in both the superficial motor cortex and deep ventral tegmental area after intracranial injection. Our liposome nanotransducers enable minimally invasive deep brain stimulation for behavioral control in animals via a flexible, mechanoluminescent sono-optogenetic system.


Asunto(s)
Estimulación Encefálica Profunda , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuronas/fisiología , Fotones , Optogenética
2.
bioRxiv ; 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38106007

RESUMEN

The precise control of mechanochemical activation within deep tissues via non-invasive ultrasound holds profound implications for advancing our understanding of fundamental biomedical sciences and revolutionizing disease treatments. However, a theory-guided mechanoresponsive materials system with well-defined ultrasound activation has yet to be explored. Here we present the concept of using porous hydrogen-bonded organic frameworks (HOFs) as toolkits for focused ultrasound programmably triggered drug activation to control specific cellular events in the deep brain, through on-demand scission of the supramolecular interactions. A theoretical model is developed to visualize the mechanochemical scission and ultrasound mechanics, providing valuable guidelines for the rational design of mechanoresponsive materials at the molecular level to achieve programmable and spatiotemporal activation control. To demonstrate the practicality of this approach, we encapsulate designer drug clozapine N-oxide (CNO) into the optimal HOF nanoparticles for FUS gated release to activate engineered G-protein-coupled receptors in the mice and rat ventral tegmental area (VTA), and hence achieved targeted neural circuits modulation even at depth 9 mm with a latency of seconds. This work demonstrates the capability of ultrasound to precisely control molecular interaction and develops ultrasound programmable HOFs to minimally invasive and spatiotemporally control cellular events, thereby facilitating the establishment of precise molecular therapeutic possibilities. We anticipate that this research could serve as a source of inspiration for precise and non-invasive molecular manipulation techniques, potentially applicable in programming molecular robots to achieve sophisticated control over cellular events in deep tissues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA