Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Atherosclerosis ; : 118583, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39353793

RESUMEN

Cardiovascular disease (CVD) is the leading cause of death worldwide, and despite treatment efforts, cardiovascular function cannot always be restored, and progression of disease be prevented. Critical insights are oftentimes based on tissue samples. Current knowledge of tissue pathology typically relies on invasive biopsies or postmortem samples. Liquid biopsies, which assess circulating mediators to deduce the histology and pathology of distant tissues, have been advancing rapidly in cancer research and offer a promising approach to be translated to the understanding and treatment of CVD. The widely understood elevations in cell-free DNA during acute and chronic cardiovascular conditions, associate with disease, severity, and offer prognostic value. The role of neutrophil extracellular traps (NETs) and circulating nucleases in thrombosis provide a solid rationale for liquid biopsies in CVD. cfDNA originates from various tissue types and cellular sources, including mitochondria and nuclei, and can be used to trace cell and tissue type lineage, as well as to gain insight into the activation status of cells. This article discusses the origin, structure, and potential utility of cfDNA, offering a deeper and less invasive approach for the understanding of the complexities of CVD.

2.
Atherosclerosis ; : 118584, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39306538

RESUMEN

Cardiovascular diseases (CVD) and their complications continue to be the leading cause of mortality globally. With recent advancements in molecular analytics, individualized treatments are gradually applied to the diagnosis and treatment of CVD. In the field of diagnostics, liquid biopsy combined with modern analytical technologies is the most popular natural source to identify disease biomarkers, as has been successfully demonstrated in the cancer field. While it is not easy to obtain any diseased tissue for different types of CVD such as atherosclerosis, deep vein thrombosis or stroke, liquid biopsies provide a simple and non-invasive alternative to surgical tissue specimens to obtain dynamic molecular information reflecting disease states. The release of cell-free ribonucleic acids (cfRNA) from stressed/damaged/dying and/or necrotic cells is a common physiological phenomenon. CfRNAs are a heterogeneous population of various types of extracellular RNA found in body fluids (blood, urine, saliva, cerebrospinal fluid) or in association with vascular/atherosclerotic tissue, offering insights into disease pathology on a diagnostic front. In particular, cf-ribosomal RNA has been shown to act as a damaging molecule in several cardio-vascular disease conditions. Moreover, such pathophysiological functions of cfRNA in CVD have been successfully antagonized by the administration of RNases. In this review, we discuss the origin, structure, types, and potential utilization of cfRNA in the diagnosis of CVD. Together with the analysis of established CVD biomarkers, the profiling of cfRNA in body fluids may thereby provide a promising approach for early disease detection and monitoring.

3.
Sci Immunol ; 9(98): eadh0545, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39178277

RESUMEN

Postoperative pain affects most patients after major surgery and can transition to chronic pain. The considerable side effects and limited efficacy of current treatments underline the need for new therapeutic options. We observed increased amounts of the metabolites BH4 and serotonin after skin injury. Mast cells were primary postoperative sources of Gch1, the rate-limiting enzyme in BH4 synthesis, itself an obligate cofactor in serotonin production by tryptophan hydroxylase (Tph1). Mice deficient in mast cells or in mast cell-specific Gch1 or Tph1 showed drastically decreased postoperative pain. We found that injury induced the nociceptive neuropeptide substance P, mast cell degranulation, and granule nerve colocalization. Substance P triggered serotonin release in mouse and human mast cells, and substance P receptor blockade substantially ameliorated pain hypersensitivity. Our findings highlight the importance of mast cells at the neuroimmune interface and substance P-driven mast cell BH4 and serotonin production as a therapeutic target for postoperative pain treatment.


Asunto(s)
Mastocitos , Dolor Postoperatorio , Serotonina , Mastocitos/inmunología , Serotonina/metabolismo , Animales , Dolor Postoperatorio/inmunología , Ratones , Humanos , Ratones Endogámicos C57BL , Sustancia P/metabolismo , Masculino , Ratones Noqueados , Triptófano Hidroxilasa/metabolismo
6.
JACC Basic Transl Sci ; 9(3): 342-360, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38559632

RESUMEN

Neutrophil extracellular traps (NETs) are implicated in the pathogenesis of abdominal aortic aneurysm (AAA), located in adventitia and intraluminal thrombus. We compared the therapeutic potential of targeting upstream or downstream effector molecules of NET formation in 2 murine AAA models based on angiotensin II or peri-adventitial elastase application. In both models, NETs were detected in formed aneurysms at treatment start. Although NET inhibitors failed in the elastase model, they prevented progression of angiotensin II-induced aneurysms with thrombus, which resembles established human disease (including thrombus development). Blockade of upstream NET mediators was more effective than interference with downstream NET molecules.

7.
bioRxiv ; 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-37293068

RESUMEN

Postoperative pain affects most patients after major surgery and can transition to chronic pain. Here, we discovered that postoperative pain hypersensitivity correlated with markedly increased local levels of the metabolite BH4. Gene transcription and reporter mouse analyses after skin injury identified neutrophils, macrophages and mast cells as primary postoperative sources of GTP cyclohydrolase-1 (Gch1) expression, the rate-limiting enzyme in BH4 production. While specific Gch1 deficiency in neutrophils or macrophages had no effect, mice deficient in mast cells or mast cell-specific Gch1 showed drastically decreased postoperative pain after surgery. Skin injury induced the nociceptive neuropeptide substance P, which directly triggers the release of BH4-dependent serotonin in mouse and human mast cells. Substance P receptor blockade substantially ameliorated postoperative pain. Our findings underline the unique position of mast cells at the neuro-immune interface and highlight substance P-driven mast cell BH4 production as promising therapeutic targets for the treatment of postoperative pain.

8.
Biomedicines ; 10(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36359376

RESUMEN

(1) Background: An unhealthy lifestyle is a significant contributor to the development of chronic diseases. Physical activity can benefit primary and secondary prevention. Higher DNase activity is associated with favourable outcomes after cardiovascular (CV) events. In this study, we aimed to investigate the influence of consequent endurance exercise on DNase activity. (2) Methods: 98 subjects with at least one CV risk factor but the physical ability to perform endurance training were included. Individuals performed a bicycle stress test at the beginning and after 8 months to assess physical performance. In between, all participants were instructed to engage in guideline-directed physical activity. Blood samples were drawn in two-month intervals to assess routine laboratory parameters, cell-free DNA (cfDNA), and DNase activity. (3) Results: Prevailing CV risk factors were overweight (65.9%), a positive family history (44.9%), hypertension (32.7%) and smoking (20.4%). Performance changed by 7.8 ± 9.1% after 8 months. Comparison of baseline to 8 months revealed a decrease in cfDNA and an increase in DNase activity. This effect was driven by participants who achieved a performance gain. (4) Conclusions: Regular physical activity might improve CV health by increasing DNase activity and thereby, the capacity to lower pro-inflammatory signalling, complementing measures of primary and secondary prevention.

10.
Cardiovasc Res ; 118(8): 2006-2017, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34173822

RESUMEN

AIMS: Extracellular chromatin and deoxyribonuclease (DNase) have been identified as important players of thrombosis, inflammation, and homeostasis in a murine model. We previously demonstrated that activated neutrophils release neutrophil extracellular traps (NETs) at the culprit site in ST-elevation myocardial infarction (STEMI), which significantly contribute to extracellular chromatin burden, and are associated with larger infarcts. To understand the correlation between neutrophil activation, extracellular chromatin, and infarct size (IS), we investigated these parameters in a porcine myocardial infarction model, and at different time points and sites in a prospective STEMI trial with cardiac magnetic resonance (CMR) endpoints. METHODS AND RESULTS: In a prospective STEMI trial (NCT01777750), 101 STEMI patients were included and blood samples were obtained from first medical contact until 6 months after primary percutaneous coronary intervention (pPCI) including direct sampling from the culprit site. CMR was performed 4 ± 2 days and 6 months after pPCI. Neutrophil counts, markers of extracellular chromatin, and inflammation were measured. Double-stranded deoxyribonucleic acid (dsDNA), citrullinated histone 3, nucleosomes, myeloperoxidase, neutrophil elastase, and interleukin (IL)-6 were significantly increased, while DNase activity was significantly decreased at the culprit site in STEMI patients. High neutrophil counts and dsDNA levels at the culprit site correlated with high microvascular obstruction (MVO) and low ejection fraction (EF). High DNase activity at the culprit site correlated with low MVO and high EF. In correspondence, dsDNA correlated with IS in the porcine myocardial infarction model. In porcine infarcts, neutrophils and extracellular chromatin were detected in congested small arteries corresponding with MVO. Markers of neutrophil activation, extracellular chromatin, DNase activity and CMR measurements correlated with markers of systemic inflammation C-reactive protein and IL-6 in patients. CONCLUSIONS: NETs and extracellular chromatin are important determinants of MVO in STEMI. Rapid degradation of extracellular chromatin by DNases appears to be crucial for microvascular patency and outcome.


Asunto(s)
Infarto del Miocardio , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Adulto , Anciano , Biomarcadores , Cromatina , ADN , Desoxirribonucleasas , Femenino , Humanos , Inflamación , Masculino , Persona de Mediana Edad , Infarto del Miocardio/patología , Estudios Prospectivos , Infarto del Miocardio con Elevación del ST/patología
11.
Eur Respir J ; 59(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34244315

RESUMEN

RATIONALE: Lung transplantation is the ultimate treatment option for patients with end-stage respiratory diseases but bears the highest mortality rate among all solid organ transplantations due to chronic lung allograft dysfunction (CLAD). The mechanisms leading to CLAD remain elusive due to an insufficient understanding of the complex post-transplant adaptation processes. OBJECTIVES: To better understand these lung adaptation processes after transplantation and to investigate their association with future changes in allograft function. METHODS: We performed an exploratory cohort study of bronchoalveolar lavage samples from 78 lung recipients and donors. We analysed the alveolar microbiome using 16S rRNA sequencing, the cellular composition using flow cytometry, as well as metabolome and lipidome profiling. MEASUREMENTS AND MAIN RESULTS: We established distinct temporal dynamics for each of the analysed data sets. Comparing matched donor and recipient samples, we revealed that recipient-specific as well as environmental factors, rather than the donor microbiome, shape the long-term lung microbiome. We further discovered that the abundance of certain bacterial strains correlated with underlying lung diseases even after transplantation. A decline in forced expiratory volume during the first second (FEV1) is a major characteristic of lung allograft dysfunction in transplant recipients. By using a machine learning approach, we could accurately predict future changes in FEV1 from our multi-omics data, whereby microbial profiles showed a particularly high predictive power. CONCLUSION: Bronchoalveolar microbiome, cellular composition, metabolome and lipidome show specific temporal dynamics after lung transplantation. The lung microbiome can predict future changes in lung function with high precision.


Asunto(s)
Trasplante de Pulmón , Microbiota , Aloinjertos , Estudios de Cohortes , Humanos , Pulmón , ARN Ribosómico 16S/genética , Estudios Retrospectivos
12.
Eur J Clin Invest ; 51(11): e13595, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34101826

RESUMEN

Degenerative aortic valve stenosis is an inflammatory process that resembles atherosclerosis. Neutrophils release their DNA upon activation and form neutrophil extracellular traps (NETs), which are present on degenerated aortic valves. NETs correlate with pressure gradients in severe aortic stenosis. Transcatheter aortic valve replacement (TAVR) is an established treatment option for aortic valve stenosis. Bioprosthetic valve deterioration promoted by inflammatory, fibrotic and thrombotic processes limits outcome. Deoxyribonuclease is a natural counter mechanism to degrade DNA in circulation. In the present observational study, we investigated plasma levels of double-stranded DNA, deoxyribonuclease activity and outcome after TAVR. 345 consecutive patients undergoing TAVR and 100 healthy reference controls were studied. Double-stranded DNA was measured by fluorescence assays in plasma obtained at baseline and after TAVR. Deoxyribonuclease activity was measured at baseline using single radial enzyme diffusion assays. Follow-up was performed at 12 months, and mean aortic pressure gradient and survival were evaluated. Receiver operating characteristic, Kaplan-Meier curves and Cox regression models were calculated. Baseline double-stranded DNA in plasma was significantly higher compared to healthy controls, was increased at 3 and 7 days after TAVR, and declined thereafter. Baseline deoxyribonuclease activity was decreased compared to healthy controls. Interestingly, low deoxyribonuclease activity correlated with higher C-reactive protein and higher mean transaortic gradient after 12 months. Finally, deoxyribonuclease activity was a strong independent predictor of outcome 12 months after TAVR. Deoxyribonuclease activity is a potential biomarker for risk stratification after TAVR. Pathomechanisms of bioprosthetic valve deterioration involving extracellular DNA and deoxyribonuclease merit investigation.


Asunto(s)
Estenosis de la Válvula Aórtica/cirugía , Desoxirribonucleasas/metabolismo , Trampas Extracelulares/metabolismo , Reemplazo de la Válvula Aórtica Transcatéter , Anciano , Anciano de 80 o más Años , Pruebas de Enzimas , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales
13.
Blood ; 137(8): 1104-1116, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33512471

RESUMEN

Acute pulmonary embolism generally resolves within 6 months. However, if the thrombus is infected, venous thrombi transform into fibrotic vascular obstructions leading to chronic deep vein thrombosis and/or chronic thromboembolic pulmonary hypertension (CTEPH), but precise mechanisms remain unclear. Neutrophils are crucial in sequestering pathogens; therefore, we investigated the role of neutrophil extracellular traps (NETs) in chronic thrombosis. Because chronic pulmonary thrombotic obstructions are biologically identical to chronic deep venous thrombi, the murine inferior vena cava ligation model was used to study the transformation of acute to chronic thrombus. Mice with staphylococcal infection presented with larger thrombi containing more neutrophils and NETs but less resolution. Targeting NETs with DNase1 diminished fibrosis and promoted thrombus resolution. For translational studies in humans, we focused on patients with CTEPH, a severe type of deep venous and pulmonary artery fibrotic obstruction after thrombosis. Neutrophils, markers of neutrophil activation, and NET formation were increased in CTEPH patients. NETs promoted the differentiation of monocytes to activated fibroblasts with the same cellular phenotype as fibroblasts from CTEPH vascular occlusions. RNA sequencing of fibroblasts isolated from thrombo-endarterectomy specimens and pulmonary artery biopsies revealed transforming growth factor-ß (TGF-ß) as the central regulator, a phenotype which was replicated in mice with fibroblast-specific TGF-ß overactivity. Our findings uncover a role of neutrophil-mediated inflammation to enhance TGF-ß signaling, which leads to fibrotic thrombus remodeling. Targeting thrombus NETs with DNases may serve as a new therapeutic concept to treat thrombosis and prevent its sequelae.


Asunto(s)
Trampas Extracelulares , Hipertensión Pulmonar/patología , Neutrófilos/patología , Embolia Pulmonar/patología , Trombosis/patología , Animales , Células Cultivadas , Enfermedad Crónica , Femenino , Fibrosis , Humanos , Masculino , Ratones , Persona de Mediana Edad
14.
Sci Rep ; 9(1): 16304, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31704966

RESUMEN

Neutrophils release their chromatin into the extracellular space upon activation. These web-like structures are called neutrophil extracellular traps (NETs) and have potent prothrombotic and proinflammatory properties. In ST-elevation myocardial infarction (STEMI), NETs correlate with increased infarct size. The interplay of neutrophils and monocytes impacts cardiac remodeling. Monocyte subsets are classified as classical, intermediate and non-classical monocytes. In the present study, in vitro stimulation with NETs led to an increase of intermediate monocytes and reduced expression of CX3CR1 in all subsets. Intermediate monocytes have been associated with poor outcome, while non-classical CX3CR1-positive monocytes could have reparative function after STEMI. We characterized monocyte subsets and NET markers at the culprit lesion site of STEMI patients (n = 91). NET surrogate markers were increased and correlated with larger infarct size and with fewer non-classical monocytes. Intermediate and especially non-classical monocytes were increased at the culprit site compared to the femoral site. Low CX3CR1 expression of monocytes correlated with high NET markers and increased infarct size. In this translational system, causality cannot be proven. However, our data suggest that NETs interfere with monocytic differentiation and receptor expression, presumably promoting a subset shift at the culprit lesion site. Reduced monocyte CX3CR1 expression may compromise myocardial salvage.


Asunto(s)
Trampas Extracelulares/metabolismo , Monocitos/metabolismo , Monocitos/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Neutrófilos/metabolismo , Neutrófilos/patología , Infarto del Miocardio con Elevación del ST/metabolismo , Adulto , Anciano , Biomarcadores , Femenino , Expresión Génica , Humanos , Inmunofenotipificación , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Persona de Mediana Edad , Infarto del Miocardio/etiología , Factores de Riesgo , Infarto del Miocardio con Elevación del ST/etiología , Infarto del Miocardio con Elevación del ST/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...