Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1719: 464754, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428340

RESUMEN

Aviation turbine fuel is a complex mixture of thousands of compounds. An analytical method using hydrophilic interaction liquid chromatography (HILIC) coupled with electrospray ionization and quadrupole time-of-flight mass spectrometry (ESI-QTOF) was developed for the identification of heteroatomic, polar compounds in aviation turbine fuel. Although compounds containing oxygen, nitrogen, and sulfur functional groups are each found at low levels (<0.1 % by mass) in fuels, their presence can generate significant effects on fuel properties. The HILIC-ESI-QTOF method is a combined separation and detection technique that possesses many advantages including a fast and simple sample preparation-requiring no extraction step therefore ensuring no loss of compounds of interest-and the ability to acquire high-fidelity compound data for chemometric analysis of heteroatomic species in aviation turbine fuel. In the development of the method, it was found that the chromatographic conditions and nature of the injection sample had a significant effect on separation efficiency and repeatability. For a sample dataset optimized using a singular aviation turbine fuel, retention time shift was able to be reduced from 0.4 min to 2.0 % relative standard deviation (RSD) to approximately 0.1 min with RSD of 0.4 % using the newly developed method. In addition, a high number of untargeted molecular features (944) and targeted amines (121) were able to be identified when utilizing optimal method conditions. The specific benefits and limitations of utilizing HILIC techniques with HPLC-ESI-QTOF are also discussed herein. This new method is currently being expanded to include analysis of all heteroatoms and is being applied to real fuel sets. The results of these studies are forthcoming.


Asunto(s)
Aviación , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Interacciones Hidrofóbicas e Hidrofílicas
2.
J Chem Phys ; 150(12): 124307, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30927886

RESUMEN

The C3 molecule is an important species with implications in combustion and astrochemistry, and much of the interest in this molecule is related to its interactions with other species found in these environments. We have utilized helium droplet beam techniques along with a recently developed carbon cluster evaporation source to assemble C3-(H2O)n and C3-(D2O)n complexes with n = 1-2 and to record their rovibrational spectra. We observe only a single isomer of the n = 1 complex, in agreement with theoretical predictions as well as data from earlier matrix isolation studies. The spectra of the n = 1 complex are consistent with the ab initio structure, which involves a nearly linear arrangement of CCC-HO atoms in the complex. The C3-H2O spectrum we obtain exhibits slight differences from the analogous C3-D2O spectrum, which we assign to a difference in linewidth between the two spectra. We have also examined the n = 2 species and obtained a structure that appears to be distinct from those observed in matrix isolation studies and, to our knowledge, has not been previously observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA