Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (201)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38009723

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes Coronavirus disease 2019 (COVID-19) is a serious threat to the general public's health. During influenza seasons, the spread of SARS-CoV-2 and other respiratory viruses may cause a population-wide burden of respiratory disease that is difficult to manage. For that, the respiratory viruses SARS-CoV-2, Influenza A, Influenza B, and Middle East respiratory syndrome (MERS-CoV) will need to be carefully watched over in the upcoming fall and winter seasons, particularly in the case of SARS-CoV-2, Influenza A, and Influenza B, which share similar epidemiological factors like susceptible populations, mode of transmission, and clinical syndromes. Without target-specific assays, it can be challenging to differentiate among cases of these viruses owing to their similarities. Accordingly, a sensitive and targeted multiplex assay that can easily differentiate between these viral targets will be useful for healthcare practitioners. In this study, we developed a real-time reverse transcriptase-PCR-based assay utilizing an in-house developed R3T one-step RT-qPCR kit for simultaneous detection of SARS-CoV-2, Influenza A, Influenza B, and SARS-CoV-2, MERS-CoV. With as few as 10 copies of their synthetic RNAs, we can successfully identify SARS-CoV-2, Influenza A, Influenza B, and MERS-CoV targets simultaneously with 100% specificity. This assay is found to be accurate, reliable, simple, sensitive, and specific. The developed method can be used as an optimized SARS-CoV-2, Influenza A, Influenza B, and SARS-CoV-2, MERS-CoV diagnostic assay in hospitals, medical centers, and diagnostic laboratories as well as for research purposes.


Asunto(s)
COVID-19 , Gripe Humana , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2/genética , Gripe Humana/diagnóstico , COVID-19/diagnóstico , ARN , Sensibilidad y Especificidad
2.
Plant Physiol ; 190(1): 745-761, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35674377

RESUMEN

Biogenesis of ribonucleoproteins occurs in dynamic subnuclear compartments called Cajal bodies (CBs). COILIN is a critical scaffolding component essential for CB formation, composition, and activity. We recently showed that Arabidopsis (Arabidopsis thaliana) AtCOILIN is phosphorylated in response to bacterial elicitor treatment. Here, we further investigated the role of AtCOILIN in plant innate immunity. Atcoilin mutants are compromised in defense responses to bacterial pathogens. Besides confirming a role of AtCOILIN in alternative splicing (AS), Atcoilin showed differential expression of genes that are distinct from those of AS, including factors involved in RNA biogenesis, metabolism, plant immunity, and phytohormones. Atcoilin mutant plants have reduced levels of defense phytohormones. As expected, the mutant plants were more sensitive to the necrotrophic fungal pathogen Botrytis cinerea. Our findings reveal an important role for AtCOILIN in innate plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Empalme Alternativo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/fisiología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta/genética , Proteínas de Unión al ARN/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34772809

RESUMEN

Enterobacter sp. SA187 is a root endophytic bacterium that maintains growth and yield of plants under abiotic stress conditions. In this work, we compared the metabolic wirings of Arabidopsis and SA187 in the free-living and endophytic interaction states. The interaction of SA187 with Arabidopsis induced massive changes in bacterial gene expression for chemotaxis, flagellar biosynthesis, quorum sensing, and biofilm formation. Besides modification of the bacterial carbon and energy metabolism, various nutrient and metabolite transporters and the entire sulfur pathway were up-regulated. Under salt stress, Arabidopsis resembled plants under sulfate starvation but not when colonized by SA187, which reprogramed the sulfur regulon of Arabidopsis. In accordance, salt hypersensitivity of multiple Arabidopsis sulfur metabolism mutants was partially or completely rescued by SA187 as much as by the addition of sulfate, L-cysteine, or L-methionine. Many components of the sulfur metabolism that are localized in the chloroplast were partially rescued by SA187. Finally, salt-induced accumulation of reactive oxygen species as well as the hypersensitivity of LSU mutants were suppressed by SA187. LSUs encode a central regulator linking sulfur metabolism to chloroplast superoxide dismutase activity. The coordinated regulation of the sulfur metabolic pathways in both the beneficial microorganism and the host plant is required for salt stress tolerance in Arabidopsis and might be a common mechanism utilized by different beneficial microbes to mitigate the harmful effects of different abiotic stresses on plants.


Asunto(s)
Enterobacter/metabolismo , Estrés Salino/genética , Tolerancia a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Azufre/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Enterobacter/genética , Regulación de la Expresión Génica de las Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Tolerantes a la Sal/genética , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA