Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38932212

RESUMEN

Oncolytic virotherapy, using viruses such as vesicular stomatitis virus (VSVΔ51) and Herpes Simplex Virus-1 (HSV-1) to selectively attack cancer cells, faces challenges such as cellular resistance mediated by the interferon (IFN) response. Dimethyl fumarate (DMF) is used in the treatment of multiple sclerosis and psoriasis and is recognized for its anti-cancer properties and has been shown to enhance both VSVΔ51 and HSV-1 oncolytic activity. Tepilamide fumarate (TPF) is a DMF analog currently undergoing clinical trials for the treatment of moderate-to-severe plaque psoriasis. The aim of this study was to evaluate the potential of TPF in enhancing the effectiveness of oncolytic viruses. In vitro, TPF treatment rendered 786-0 carcinoma cells more susceptible to VSVΔ51 infection, leading to increased viral replication. It outperformed DMF in both increasing viral infection and increasing the killing of these resistant cancer cells and other cancer cell lines tested. Ex vivo studies demonstrated TPF's selective boosting of oncolytic virus infection in cancer cells without affecting healthy tissues. Effectiveness was notably high in pancreatic and ovarian tumor samples. Our study further indicates that TPF can downregulate the IFN pathway through a similar mechanism to DMF, making resistant cancer cells more vulnerable to viral infection. Furthermore, TPF's impact on gene therapy was assessed, revealing its ability to enhance the transduction efficiency of vectors such as lentivirus, adenovirus type 5, and adeno-associated virus type 2 across various cell lines. This data underscore TPF's potential role in not only oncolytic virotherapy but also in the broader application of gene therapy. Collectively, these findings position TPF as a promising agent in oncolytic virotherapy, warranting further exploration of its therapeutic potential.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Replicación Viral , Humanos , Viroterapia Oncolítica/métodos , Línea Celular Tumoral , Virus Oncolíticos/fisiología , Replicación Viral/efectos de los fármacos , Fumaratos/farmacología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Dimetilfumarato/farmacología , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología
2.
Mol Ther ; 31(11): 3176-3192, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37766429

RESUMEN

The clinical efficacy of VSVΔ51 oncolytic virotherapy has been limited by tumor resistance to viral infection, so strategies to transiently repress antiviral defenses are warranted. Pevonedistat is a first-in-class NEDD8-activating enzyme (NAE) inhibitor currently being tested in clinical trials for its antitumor potential. In this study, we demonstrate that pevonedistat sensitizes human and murine cancer cells to increase oncolytic VSVΔ51 infection, increase tumor cell death, and improve therapeutic outcomes in resistant syngeneic murine cancer models. Increased VSVΔ51 infectivity was also observed in clinical human tumor samples. We further identify the mechanism of this effect to operate via blockade of the type 1 interferon (IFN-1) response through neddylation-dependent interferon-stimulated growth factor 3 (ISGF3) repression and neddylation-independent inhibition of NF-κB nuclear translocation. Together, our results identify a role for neddylation in regulating the innate immune response and demonstrate that pevonedistat can improve the therapeutic outcomes of strategies using oncolytic virotherapy.


Asunto(s)
Inhibidores Enzimáticos , Proteína NEDD8 , Neoplasias , Viroterapia Oncolítica , Animales , Humanos , Ratones , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Interferones , Proteína NEDD8/antagonistas & inhibidores , Proteína NEDD8/genética , Neoplasias/tratamiento farmacológico
3.
Front Immunol ; 14: 1181014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153626

RESUMEN

Background: Established mouse models of HER2+ cancer are based on the over-expression of rodent Neu/Erbb2 homologues, which are incompatible with human HER2 (huHER2) targeted therapeutics. Additionally, the use of immune-deficient xenograft or transgenic models precludes assessment of native anti-tumour immune responses. These hurdles have been a challenge for our understanding of the immune mechanisms behind huHER2-targeting immunotherapies. Methods: To assess the immune impacts of our huHER2-targeted combination strategy, we generated a syngeneic mouse model of huHER2+ breast cancer, using a truncated form of huHER2, HER2T. Following validation of this model, we next treated tumour-bearing with our immunotherapy strategy: oncolytic vesicular stomatitis virus (VSVΔ51) with clinically approved antibody-drug conjugate targeting huHER2, trastuzumab emtansine (T-DM1). We assessed efficacy through tumour control, survival, and immune analyses. Results: The generated truncated HER2T construct was non-immunogenic in wildtype BALB/c mice upon expression in murine mammary carcinoma 4T1.2 cells. Treatment of 4T1.2-HER2T tumours with VSVΔ51+T-DM1 yielded robust curative efficacy compared to controls, and broad immunologic memory. Interrogation of anti-tumour immunity revealed tumour infiltration by CD4+ T cells, and activation of B, NK, and dendritic cell responses, as well as tumour-reactive serum IgG. Conclusions: The 4T1.2-HER2T model was used to evaluate the anti-tumour immune responses following our complex pharmacoviral treatment strategy. These data demonstrate utility of the syngeneic HER2T model for assessment of huHER2-targeted therapies in an immune-competent in vivo setting. We further demonstrated that HER2T can be implemented in multiple other syngeneic tumour models, including but not limited to colorectal and ovarian models. These data also suggest that the HER2T platform may be used to assess a range of surface-HER2T targeting approaches, such as CAR-T, T-cell engagers, antibodies, or even retargeted oncolytic viruses.


Asunto(s)
Neoplasias de la Mama , Rhabdoviridae , Humanos , Ratones , Animales , Femenino , Ado-Trastuzumab Emtansina/uso terapéutico , Neoplasias de la Mama/metabolismo , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Modelos Animales de Enfermedad
4.
J Biomed Mater Res B Appl Biomater ; 111(5): 1133-1141, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36632686

RESUMEN

There is controversial clinical evidence regarding the added antibacterial benefit of locally administering antiseptic solutions or antibiotics to the infected joint space. The objectives of this in vitro study were to test the efficacy of povidone-iodine (PVP-I) and vancomycin in treating premature and developed Staphylococcus aureus biofilms grown on titanium implant surfaces. PVP-I and vancomycin were used to treat immature and developed biofilms formed by two clinical strains of S. aureus (BP043-MRSA, PB011-MSSA). S. aureus strains were grown as immature (3 h-old) or developed (24 h-old) biofilm. These biofilms were grown on titanium plasma sprayed discs. The treatment regimens tested were: 0.8% PVP-I, 500 µg/ml vancomycin as well as a combination of vancomycin and PVP-I. PVP-I was tested at 3 min, as per current clinical practice, versus 1 min treatment times. In addition, the cytotoxicity of the PVP-I and vancomycin was tested using fresh skeletal muscle tissue cores harvested from the rat's abdominal muscles using alamarBlue assay. The combination of PVP-I (3 min) and vancomycin (24 h.) showed synergistic interaction and the best efficacy against immature biofilms formed by both clinical strains. This degree of eradication was statistically significant compared to the untreated control, p < .0001. However, this combination therapy had limited efficiency against developed biofilms. Also, PVP-I alone was more effective when exposure time was 3 min instead of 1 min against immature biofilm for MRSA, p = .02, and MSSA, p = .01. PVP-I and vancomycin were not effective against developed biofilm regardless of exposure time. Also, combining PVP-I and vancomycin was not cytotoxic to muscle tissue. Combining PVP-I with vancomycin is superior in reducing viable S. aureus cells in immature biofilms grown on titanium surface without causing significant cytotoxicity to muscle tissue. Exposure times and biofilm maturity play a role in dictating the efficacy of using local antiseptics and antibiotics to treat biofilms on implant surfaces.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Animales , Ratas , Vancomicina/farmacología , Povidona Yodada/farmacología , Staphylococcus aureus , Meticilina , Titanio/farmacología , Antibacterianos/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana
5.
Front Immunol ; 14: 1332929, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38169670

RESUMEN

Immunotherapy and specifically oncolytic virotherapy has emerged as a promising option for cancer patients, with oncolytic herpes simplex virus-1 (oHSV-1) expressing granulocyte macrophage colony stimulating factor being the first OV to be approved by the FDA for treatment of melanoma. However, not all cancers are sensitive and responsive to oncolytic viruses (OVs). Our group has demonstrated that fumaric and maleic acid esters (FMAEs) are very effective in sensitizing cancer cells to OV infection. Of note, these FMAEs include dimethyl fumarate (DMF, also known as Tecfidera®), an approved treatment for multiple sclerosis and psoriasis. This study aimed to assess the efficacy of DMF in combination with oncolytic HSV-1 in preclinical cancer models. We demonstrate herewith that pre-treatment with DMF or other FMAEs leads to a significant increase in viral growth of oHSV-1 in several cancer cell lines, including melanoma, while decreasing cell viability. Additionally, DMF was able to enhance ex vivo oHSV-1 infection of mouse-derived tumor cores as well as human patient tumor samples but not normal tissue. We further reveal that the increased viral spread and oncolysis of the combination therapy occurs via inhibition of type I IFN production and response. Finally, we demonstrate that DMF in combination with oHSV-1 can improve therapeutic outcomes in aggressive syngeneic murine cancer models. In sum, this study demonstrates the synergistic potential of two approved therapies for clinical evaluation in cancer patients.


Asunto(s)
Herpesvirus Humano 1 , Melanoma , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Animales , Ratones , Dimetilfumarato/farmacología , Virus Oncolíticos/fisiología , Fumaratos/farmacología
6.
Front Immunol ; 13: 1032356, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532027

RESUMEN

Oncolytic viruses (OVs) are promising anticancer treatments that specifically replicate in and kill cancer cells and have profound immunostimulatory effects. We previously reported the potential of vanadium-based compounds such as vanadyl sulfate (VS) as immunostimulatory enhancers of OV immunotherapy. These compounds, in conjunction with RNA-based OVs such as oncolytic vesicular stomatitis virus (VSVΔ51), improve viral spread and oncolysis, leading to long-term antitumor immunity and prolonged survival in resistant tumor models. This effect is associated with a virus-induced antiviral type I IFN response shifting towards a type II IFN response in the presence of vanadium. Here, we investigated the systemic impact of VS+VSVΔ51 combination therapy to understand the immunological mechanism of action leading to improved antitumor responses. VS+VSVΔ51 combination therapy significantly increased the levels of IFN-γ and IL-6, and improved tumor antigen-specific T-cell responses. Supported by immunological profiling and as a proof of concept for the design of more effective therapeutic regimens, we found that local delivery of IL-12 using VSVΔ51 in combination with VS further improved therapeutic outcomes in a syngeneic CT26WT colon cancer model.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Citocinas , Vanadio , Inmunoterapia , Inmunidad , Quimiocinas
7.
Mol Ther Oncolytics ; 25: 146-159, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35572196

RESUMEN

Oncolytic virotherapy is a clinically validated approach to treat cancers such as melanoma; however, tumor resistance to virus makes its efficacy variable. Compounds such as sodium orthovanadate (vanadate) can overcome viral resistance and synergize with RNA-based oncolytic viruses. In this study, we explored the basis of vanadate mode of action and identified key cellular components in vanadate's oncolytic virus-enhancing mechanism using a high-throughput kinase inhibitor screen. We found that several kinase inhibitors affecting signaling downstream of the epidermal growth factor receptor (EGFR) pathway abrogated the oncolytic virus-enhancing effects of vanadate. EGFR pathway inhibitors such as gefitinib negated vanadate-associated changes in the phosphorylation and localization of STAT1/2 as well as NF-κB signaling. Moreover, gefitinib treatment could abrogate the viral sensitizing response of vanadium compounds in vivo. Together, we demonstrate that EGFR signaling plays an integral role in vanadium viral sensitization and that pharmacological EGFR blockade can counteract vanadium/oncolytic virus combination therapy.

8.
Mol Ther ; 30(9): 2998-3016, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526097

RESUMEN

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Imidazoles , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Animales , Antivirales/farmacología , Imidazoles/farmacología , Ratones , Unión Proteica , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química , Estados Unidos , United States Food and Drug Administration
9.
Cancer Gene Ther ; 29(10): 1502-1513, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35411090

RESUMEN

We previously demonstrated that engagement of cadherins, cell to cell adhesion molecules, triggers a dramatic increase in levels and activity of the Rac/Cdc42 small GTPases, which is followed by secretion of IL6 family cytokines and activation of their common receptor, gp130, in an autocrine manner. This results in phosphorylation of the Signal Transducer and Activator of Transcription-3 (Stat3) on tyrosine-705, which then dimerizes, migrates to the nucleus, and activates transcription of genes involved in cell division and survival. In the present report we demonstrate that, in mouse Balb/c3T3 fibroblasts, mutationally activated Src527F also increases Rac levels, leading to secretion of IL6 family cytokines and gp130 activation, which triggers the Stat3-ptyr705 increase. Interestingly, our results also demonstrate that cadherin-11 is required to preserve gp130 levels for IL6 family signaling. At the same time, however, activated Src527F downregulates cadherin-11, in a quantitative manner. As a result, Src527F expression to intermediate levels allows sufficient cadherin-11, hence gp130 levels for Stat3 activation, as expected. However, expressed to high levels, Src527F eliminates cadherin-11, hence gp130 signaling, thus abolishing Stat3-ptyr705 stimulation. Taken together, these data establish for the first time a loop between Src, cadherin-11, gp130, and Stat3 activation. This fine balance between Src527F and cadherin-11 levels which is required for Stat3 activation and cellular survival could have significant therapeutic implications.


Asunto(s)
Interleucina-6 , Factor de Transcripción STAT3 , Animales , Ratones , Cadherinas/genética , Cadherinas/metabolismo , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Citocinas/metabolismo , Fibroblastos/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Fosforilación , Factor de Transcripción STAT3/metabolismo , Tirosina/metabolismo , Genes src , Proteínas de Unión al GTP rac/metabolismo
10.
Exp Cell Res ; 411(1): 112731, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34270980

RESUMEN

Adhesion of cells to each other and to the extracellular matrix (ECM) are both required for cellular functions. Cell-to-cell adhesion is mediated by cadherins, and their engagement triggers the activation of Stat3, which offers a potent survival signal. Adhesion to the ECM on the other hand, activates FAK which attracts and activates Src, as well as receptor tyrosine kinases (RTKs), the PI3k/Akt and Ras/Erk pathways. However, the effect of cell density upon FAK and Akt activity has not been examined. We now demonstrate that, interestingly, despite being potent Stat3 activators, Src and RTKs are unable to activate Stat3 in sparsely growing (i.e., without cadherin engagement), non-neoplastic cells attached to the ECM. In contrast, cell aggregation (i.e., cadherin engagement in the absence of adhesion to a solid substratum) was found to activate both Stat3 and Akt. Pharmacologic or genetic reduction of FAK activity abolished Akt activity at low densities, indicating that FAK is an important activator of Akt in this setting. Notably, FAK knockout increased cellular sensitivity to the Stat3 inhibitor CPA7, while FAK reintroduction restored resistance to this drug. These findings suggest a complementary role of integrin/FAK/Akt and cadherin/Stat3-mediated pro-survival pathways, which may be of significance during neoplastic transformation and metastasis.

12.
ACS Infect Dis ; 7(11): 3034-3051, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34658235

RESUMEN

The antimicrobial medication malarone (atovaquone/proguanil) is used as a fixed-dose combination for treating children and adults with uncomplicated malaria or as chemoprophylaxis for preventing malaria in travelers. It is an inexpensive, efficacious, and safe drug frequently prescribed around the world. Following anecdotal evidence from 17 patients in the provinces of Quebec and Ontario, Canada, suggesting that malarone/atovaquone may present some benefits in protecting against COVID-19, we sought to examine its antiviral potential in limiting the replication of SARS-CoV-2 in cellular models of infection. In VeroE6 expressing human TMPRSS2 and human lung Calu-3 epithelial cells, we show that the active compound atovaquone at micromolar concentrations potently inhibits the replication of SARS-CoV-2 and other variants of concern including the alpha, beta, and delta variants. Importantly, atovaquone retained its full antiviral activity in a primary human airway epithelium cell culture model. Mechanistically, we demonstrate that the atovaquone antiviral activity against SARS-CoV-2 is partially dependent on the expression of TMPRSS2 and that the drug can disrupt the interaction of the spike protein with the viral receptor, ACE2. Additionally, spike-mediated membrane fusion was also reduced in the presence of atovaquone. In the United States, two clinical trials of atovaquone administered alone or in combination with azithromycin were initiated in 2020. While we await the results of these trials, our findings in cellular infection models demonstrate that atovaquone is a potent antiviral FDA-approved drug against SARS-CoV-2 and other variants of concern in vitro.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Atovacuona/farmacología , Humanos , Estados Unidos
13.
Exp Cell Res ; 404(1): 112601, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33957118

RESUMEN

Adhesion of cells to each other and to the extracellular matrix (ECM) are both required for cellular functions. Cell-to-cell adhesion is mediated by cadherins and their engagement triggers the activation of Stat3, which offers a potent survival signal. Adhesion to the ECM on the other hand, activates FAK which attracts and activates Src, as well as receptor tyrosine kinases (RTKs), the PI3k/Akt and Ras/Erk pathways. However, the effect of cell density upon FAK and Akt activity has not been examined. We now demonstrate that, interestingly, despite being potent Stat3 activators, Src and RTKs are unable to activate Stat3 in sparsely growing (i.e., without cadherin engagement), non-neoplastic cells attached to the ECM. In contrast, cell aggregation (i.e., cadherin engagement in the absence of adhesion to a solid substratum) was found to activate both Stat3 and Akt. Pharmacologic or genetic reduction of FAK activity abolished Akt activity at low densities, indicating that FAK is an important activator of Akt in this setting. Notably, FAK knockout increased cellular sensitivity to the Stat3 inhibitor CPA7, while FAK reintroduction restored resistance to this drug. These findings suggest a complementary role of integrin/FAK/Akt and cadherin/Stat3-mediated pro-survival pathways, which may be of significance during neoplastic transformation and metastasis.


Asunto(s)
Cadherinas/metabolismo , Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Adhesión Celular/fisiología , Supervivencia Celular/fisiología , Transformación Celular Neoplásica/metabolismo , Matriz Extracelular/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología
14.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668756

RESUMEN

Despite sequence similarity to SARS-CoV-1, SARS-CoV-2 has demonstrated greater widespread virulence and unique challenges to researchers aiming to study its pathogenicity in humans. The interaction of the viral receptor binding domain (RBD) with its main host cell receptor, angiotensin-converting enzyme 2 (ACE2), has emerged as a critical focal point for the development of anti-viral therapeutics and vaccines. In this study, we selectively identify and characterize the impact of mutating certain amino acid residues in the RBD of SARS-CoV-2 and in ACE2, by utilizing our recently developed NanoBiT technology-based biosensor as well as pseudotyped-virus infectivity assays. Specifically, we examine the mutational effects on RBD-ACE2 binding ability, efficacy of competitive inhibitors, as well as neutralizing antibody activity. We also look at the implications the mutations may have on virus transmissibility, host susceptibility, and the virus transmission path to humans. These critical determinants of virus-host interactions may provide more effective targets for ongoing vaccines, drug development, and potentially pave the way for determining the genetic variation underlying disease severity.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Neutralizantes/inmunología , Antivirales/farmacología , Sitios de Unión , COVID-19/inmunología , Células HEK293 , Interacciones Microbiota-Huesped , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores Virales/química , Receptores Virales/metabolismo , SARS-CoV-2/efectos de los fármacos , Alineación de Secuencia , Tratamiento Farmacológico de COVID-19
15.
Biosens Bioelectron ; 180: 113122, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33706157

RESUMEN

As the COVID-19 pandemic continues, there is an imminent need for rapid diagnostic tools and effective antivirals targeting SARS-CoV-2. We have developed a novel bioluminescence-based biosensor to probe a key host-virus interaction during viral entry: the binding of SARS-CoV-2 viral spike (S) protein to its receptor, angiotensin-converting enzyme 2 (ACE2). Derived from Nanoluciferase binary technology (NanoBiT), the biosensor is composed of Nanoluciferase split into two complementary subunits, Large BiT and Small BiT, fused to the Spike S1 domain of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. The ACE2-S1 interaction results in reassembly of functional Nanoluciferase, which catalyzes a bioluminescent reaction that can be assayed in a highly sensitive and specific manner. We demonstrate the biosensor's large dynamic range, enhanced thermostability and pH tolerance. In addition, we show the biosensor's versatility towards the high-throughput screening of drugs which disrupt the ACE2-S1 interaction, as well as its ability to act as a surrogate virus neutralization assay. Results obtained with our biosensor correlate well with those obtained with a Spike-pseudotyped lentivirus assay. This rapid in vitro tool does not require infectious virus and should enable the timely development of antiviral modalities targeting SARS-CoV-2 entry.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Mediciones Luminiscentes/métodos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Células HEK293 , Humanos , Luciferasas , Pruebas de Neutralización , Internalización del Virus
16.
Mol Ther Oncolytics ; 20: 306-324, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33614913

RESUMEN

The avian paramyxovirus, Newcastle disease virus (NDV), is a promising oncolytic agent that has been shown to be safe and effective in a variety of pre-clinical cancer models and human clinical trials. NDV preferentially replicates in tumor cells due to signaling defects in apoptotic and antiviral pathways acquired during the transformation process and is a potent immunostimulatory agent. However, when used as a monotherapy NDV lacks the ability to consistently generate durable remissions. Here we investigate the use of viral sensitizer-mediated combination therapy to enhance the anti-neoplastic efficacy of NDV. Intratumoral injection of vanadyl sulfate, a pan-inhibitor of protein tyrosine phosphatases, in combination with NDV significantly increased the number and activation status of natural killer (NK) cells in the tumor microenvironment, concomitant with increased expression of interferon-ß, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-1, leading to rapid tumor regression and long-term cures in mice bearing syngeneic B16-F10 melanomas. The anti-tumor efficacy of this combination therapy was abrogated when NK cells were depleted and when interferon-ß expression was transiently suppressed. Tumor-specific CD8+ T cell responses were not detected, nor were mice whose tumors regressed protected from re-challenge. This suggested efficacy of the combination therapy predominantly relied on the innate immune system. Importantly, efficacy was not limited to melanoma; it was also demonstrated in a murine prostate cancer model. Taken together, these results suggest that combining NDV with vanadyl sulfate potentiates an innate immune response that can potentiate rapid clearance of tumors, with type I interferon signaling and NK cells being important mechanisms of action.

17.
Mol Ther ; 29(6): 1984-2000, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33578036

RESUMEN

The ongoing COVID-19 pandemic has highlighted the immediate need for the development of antiviral therapeutics targeting different stages of the SARS-CoV-2 life cycle. We developed a bioluminescence-based bioreporter to interrogate the interaction between the SARS-CoV-2 viral spike (S) protein and its host entry receptor, angiotensin-converting enzyme 2 (ACE2). The bioreporter assay is based on a nanoluciferase complementation reporter, composed of two subunits, large BiT and small BiT, fused to the S receptor-binding domain (RBD) of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. Using this bioreporter, we uncovered critical host and viral determinants of the interaction, including a role for glycosylation of asparagine residues within the RBD in mediating successful viral entry. We also demonstrate the importance of N-linked glycosylation to the RBD's antigenicity and immunogenicity. Our study demonstrates the versatility of our bioreporter in mapping key residues mediating viral entry as well as screening inhibitors of the ACE2-RBD interaction. Our findings point toward targeting RBD glycosylation for therapeutic and vaccine strategies against SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Anticuerpos Neutralizantes/farmacología , Bioensayo , Lectinas/farmacología , Receptores Virales/química , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Asparagina/química , Asparagina/metabolismo , Sitios de Unión , COVID-19/diagnóstico , COVID-19/inmunología , COVID-19/virología , Genes Reporteros , Glicosilación/efectos de los fármacos , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptores Virales/antagonistas & inhibidores , Receptores Virales/genética , Receptores Virales/inmunología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
18.
Commun Biol ; 3(1): 254, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444806

RESUMEN

We have demonstrated that microtubule destabilizing agents (MDAs) can sensitize tumors to oncolytic vesicular stomatitis virus (VSVΔ51) in various preclinical models of cancer. The clinically approved T-DM1 (Kadcyla®) is an antibody-drug conjugate consisting of HER2-targeting trastuzumab linked to the potent MDA and maytansine derivative DM1. We reveal that combining T-DM1 with VSVΔ51 leads to increased viral spread and tumor killing in trastuzumab-binding, VSVΔ51-resistant cancer cells. In vivo, co-treatment of VSVΔ51 and T-DM1 increased overall survival in HER2-overexpressing, but trastuzumab-refractory, JIMT1 human breast cancer xenografts compared to monotherapies. Furthermore, viral spread in cultured HER2+ human ovarian cancer patient-derived ascites samples was enhanced by the combination of VSVΔ51 and T-DM1. Our data using the clinically approved Kadcyla® in combination with VSVΔ51 demonstrates proof of concept that targeted delivery of a viral-sensitizing molecule using an antibody-drug conjugate can enhance oncolytic virus activity and provides rationale for translation of this approach.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/terapia , Sinergismo Farmacológico , Viroterapia Oncolítica/métodos , Rhabdoviridae/genética , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Terapia Combinada , Femenino , Humanos , Maitansina/administración & dosificación , Ratones , Ratones Desnudos , Trastuzumab/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Biometals ; 32(3): 545-561, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31209680

RESUMEN

Oncolytic viruses rewire the immune system and can lead to long-lasting antitumor defenses against primary and metastatic tumors. However, results from clinical studies have shown heterogeneity in responses suggesting that multiplexed approaches may be necessary to consistently generate positive outcomes in patients. To this end, we explored the combination of oncolytic rhabdovirus VSV∆51 with vanadium(V) dipicolinate derivatives, which have already been explored for their antidiabetic properties in animal models. The combination of vanadium-based dipicolinate compounds with VSV∆51 significantly increased viral replication and cytotoxicity in the human renal cell carcinoma cell line 786-0. The effects of three vanadium(V)-dipicolinate coordination complexes ([VO2dipic]-, [VO2dipic-OH]- and [VO2dipic-Cl]- with -OH or -Cl in the para position) were compared to that of the simple salts using spectroscopy and speciation profiles. Like the vanadate salts and the vanadyl cation, all dioxovanadium(V) dipicolinate complexes tested were found to increase viral infection and cytotoxicity when used in combination with VSV∆51. Viral sensitization is dependent on the vanadium since free dipicolinate ligands exerted no effect on viral infection and viability. The ability of these complexes to interact with interfaces and the stability of the complexes were evaluated under physiological conditions. Results indicate that these complexes undergo hydrolysis in cell culture media thereby generating vanadate. The vanadium dipicolinate derivatives in the context of immunovirotherapy shares similarities with previous studies exploring the antidiabetic properties of the compounds. The synergy between vanadium compounds and the oncolytic virus suggests that these compounds may be valuable in the development of novel and effective pharmaco-viral therapies.


Asunto(s)
Antivirales/farmacología , Complejos de Coordinación/farmacología , Viroterapia Oncolítica , Virus Oncolíticos/efectos de los fármacos , Ácidos Picolínicos/farmacología , Compuestos de Vanadio/farmacología , Virosis/terapia , Antivirales/síntesis química , Antivirales/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Humanos , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Ácidos Picolínicos/química , Relación Estructura-Actividad , Células Tumorales Cultivadas , Compuestos de Vanadio/química , Virosis/tratamiento farmacológico
20.
Anticancer Res ; 39(6): 2749-2756, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31177110

RESUMEN

BACKGROUND/AIM: The differentiation of the mouse breast epithelial cell line HC11 is known to require confluence as well as the addition of hydrocortisone, insulin and prolactin. MATERIALS AND METHODS: Since confluence, which triggers the engagement of the cell-to-cell adhesion molecule E-cadherin, induces a dramatic increase in the activity of signal transducer and activator of transcription-3 (Stat3), we examined the role of Stat3 in HC11 cell differentiation. RESULTS: Stat3 inhibition abolished differentiation, indicating that Stat3 activity is critically required. However, expression of the mutationally activated form of Stat3 (Stat3C), rather than promoting, it was found to block cell differentiation, even when expressed in low levels, and in the absence of full neoplastic conversion. CONCLUSION: The strength of the E-cadherin/Stat3 signal is key for the outcome of the differentiation process.


Asunto(s)
Células Epiteliales/citología , Glándulas Mamarias Animales/citología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Animales , Cadherinas/metabolismo , Diferenciación Celular , Femenino , Glándulas Mamarias Animales/metabolismo , Ratones , Mutación , Fosforilación , Transducción de Señal , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...