Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 32(5): 1311-1327, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38449314

RESUMEN

While studying transgene expression after systemic administration of lentiviral vectors, we found that splenic B cells are robustly transduced, regardless of the types of pseudotyped envelope proteins. However, the administration of two different pseudotypes resulted in transduction of two distinct B cell populations, suggesting that each pseudotype uses unique and specific receptors for its attachment and entry into splenic B cells. Single-cell RNA sequencing analysis of the transduced cells demonstrated that different pseudotypes transduce distinct B cell subpopulations characterized by specific B cell receptor (BCR) genotypes. Functional analysis of the BCRs of the transduced cells demonstrated that BCRs specific to the pseudotyping envelope proteins mediate viral entry, enabling the vectors to selectively transduce the B cell populations that are capable of producing antibodies specific to their envelope proteins. Lentiviral vector entry via the BCR activated the transduced B cells and induced proliferation and differentiation into mature effectors, such as memory B and plasma cells. BCR-mediated viral entry into clonally specific B cell subpopulations raises new concepts for understanding the biodistribution of transgene expression after systemic administration of lentiviral vectors and offers new opportunities for BCR-targeted gene delivery by pseudotyped lentiviral vectors.


Asunto(s)
Linfocitos B , Vectores Genéticos , Lentivirus , Receptores de Antígenos de Linfocitos B , Transducción Genética , Transgenes , Proteínas del Envoltorio Viral , Lentivirus/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Animales , Ratones , Linfocitos B/metabolismo , Linfocitos B/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Tropismo Viral , Humanos , Internalización del Virus
2.
ACS Nano ; 18(9): 6908-6926, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38381620

RESUMEN

The durability of a protective immune response generated by a vaccine depends on its ability to induce long-term T cell immunity, which tends to decline in aging populations. The longest protection appears to arise from T memory stem cells (TMSCs) that confer high expandability and effector functions when challenged. Here we engineered artificial antigen presenting cells (aAPC) with optimized size, stiffness and activation signals to induce human and mouse CD8+ TMSCs in vitro. This platform was optimized as a vaccine booster of TMSCs (Vax-T) with prolonged release of small-molecule blockade of the glycogen synthase kinase-3ß together with target antigens. By using SARS-CoV-2 antigen as a model, we show that a single injection of Vax-T induces durable antigen-specific CD8+ TMSCs in young and aged mice, and generates humoral responses at a level stronger than or similar to soluble vaccines. This Vax-T approach can boost long-term immunity to fight infectious diseases, cancer, and other diseases.


Asunto(s)
Linfocitos T CD8-positivos , Vacunas , Ratones , Humanos , Animales , Memoria Inmunológica , Materiales Biocompatibles , Células Madre
3.
iScience ; 27(3): 109088, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405605

RESUMEN

Zika virus (ZIKV) infection during pregnancy causes severe neurological and ocular abnormalities in infants, yet no vaccine or antivirals are available. Our transcriptomic analysis of ZIKV-infected retinal pigment epithelial (RPE) cells revealed alterations in the cholesterol pathway. Thus, we investigated the functional roles of ATP binding cassette transporter G1 (ABCG1) and sterol response element binding protein 2 (SREPB-2), two key players in cholesterol metabolism, during ocular ZIKV infection. Our in vitro data showed that increased ABCG1 activity via liver X receptors (LXRs), reduced ZIKV replication, while ABCG1 knockdown increased replication with elevated intracellular cholesterol. Conversely, inhibiting SREBP-2 or its knockdown reduced ZIKV replication by lowering cholesterol levels. In vivo, LXR agonist or SREBP-2 inhibitor treatment mitigated ZIKV-induced chorioretinal lesions in mice, concomitant with decreased expression of inflammatory mediators and increased activation of antiviral response genes. In summary, our study identifies ABCG1's antiviral role and SREBP-2's proviral effects in ocular ZIKV infection, offering cholesterol metabolism as a potential target to develop antiviral therapies.

4.
Commun Biol ; 6(1): 1115, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923961

RESUMEN

The ketogenic diet (KD) has demonstrated benefits in numerous clinical studies and animal models of disease in modulating the immune response and promoting a systemic anti-inflammatory state. Here we investigate the effects of a KD on systemic toxicity in mice following SARS-CoV-2 infection. Our data indicate that under KD, SARS-CoV-2 reduces weight loss with overall improved animal survival. Muted multi-organ transcriptional reprogramming and metabolism rewiring suggest that a KD initiates and mitigates systemic changes induced by the virus. We observed reduced metalloproteases and increased inflammatory homeostatic protein transcription in the heart, with decreased serum pro-inflammatory cytokines (i.e., TNF-α, IL-15, IL-22, G-CSF, M-CSF, MCP-1), metabolic markers of inflammation (i.e., kynurenine/tryptophane ratio), and inflammatory prostaglandins, indicative of reduced systemic inflammation in animals infected under a KD. Taken together, these data suggest that a KD can alter the transcriptional and metabolic response in animals following SARS-CoV-2 infection with improved mice health, reduced inflammation, and restored amino acid, nucleotide, lipid, and energy currency metabolism.


Asunto(s)
COVID-19 , Dieta Cetogénica , Ratones , Animales , SARS-CoV-2 , Inflamación , Citocinas
5.
MedComm (2020) ; 4(5): e400, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37822714

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal agent for coronavirus disease 2019 (COVID-19). Although vaccines have helped to prevent uncontrolled viral spreading, our understanding of the fundamental biology of SARS-CoV-2 infection remains insufficient, which hinders effective therapeutic development. Here, we found that Apolipoprotein E (ApoE), a lipid binding protein, is hijacked by SARS-CoV-2 for infection. Preincubation of SARS-CoV-2 with a neutralizing antibody specific to ApoE led to inhibition of SARS-CoV-2 infection. The ApoE neutralizing antibody efficiently blocked SARS-CoV-2 infection of human iPSC-derived astrocytes and air-liquid interface organoid models in addition to human ACE2-expressing HEK293T cells and Calu-3 lung cells. ApoE mediates SARS-CoV-2 entry through binding to its cellular receptors such as the low density lipoprotein receptor (LDLR). LDLR knockout or ApoE mutations at the receptor binding domain or an ApoE mimetic peptide reduced SARS-CoV-2 infection. Furthermore, we detected strong membrane LDLR expression on SARS-CoV-2 Spike-positive cells in human lung tissues, whereas no or low ACE2 expression was detected. This study provides a new paradigm for SARS-CoV-2 cellular entry through binding of ApoE on the lipoviral particles to host cell receptor(s). Moreover, this study suggests that ApoE neutralizing antibodies are promising antiviral therapies for COVID-19 by blocking entry of both parental virus and variants of concern.

6.
Cells ; 12(19)2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37830597

RESUMEN

Glioblastoma (GBM), the most common primary malignant brain tumor, is a highly lethal form of cancer with a very limited set of treatment options. High heterogeneity in the tumor cell population and the invasive nature of these cells decrease the likely efficacy of traditional cancer treatments, thus requiring research into novel treatment options. The use of oncolytic viruses as potential therapeutics has been researched for some time. Zika virus (ZIKV) has demonstrated oncotropism and oncolytic effects on GBM stem cells (GSCs). To address the need for safe and effective GBM treatments, we designed an attenuated ZIKV strain (ZOL-1) that does not cause paralytic or neurological diseases in mouse models compared with unmodified ZIKV. Importantly, we found that patient-derived GBM tumors exhibited susceptibility (responders) and non-susceptibility (non-responders) to ZOL-1-mediated tumor cell killing, as evidenced by differential apoptotic cell death and cell viability upon ZOL-1 treatment. The oncolytic effect observed in responder cells was seen both in vitro in neurosphere models and in vivo upon xenograft. Finally, we observed that the use of ZOL-1 as combination therapy with multiple PI3K-AKT inhibitors in non-responder GBM resulted in enhanced chemotherapeutic efficacy. Altogether, this study establishes ZOL-1 as a safe and effective treatment against GBM and provides a foundation to conduct further studies evaluating its potential as an effective adjuvant with other chemotherapies and kinase inhibitors.


Asunto(s)
Glioblastoma , Viroterapia Oncolítica , Infección por el Virus Zika , Virus Zika , Animales , Ratones , Humanos , Glioblastoma/metabolismo , Virus Zika/fisiología , Viroterapia Oncolítica/métodos , Fosfatidilinositol 3-Quinasas
7.
bioRxiv ; 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37577539

RESUMEN

Background: Hantaviruses - dichotomized into New World (i.e. Andes virus, ANDV; Sin Nombre virus, SNV) and Old-World viruses (i.e. Hantaan virus, HTNV) - are zoonotic viruses transmitted from rodents to humans. Currently, no FDA-approved vaccines against hantaviruses exist. Given the recent breakthrough to human-human transmission by the ANDV, an essential step is to establish an effective pandemic preparedness infrastructure to rapidly identify cell tropism, infective potential, and effective therapeutic agents through systematic investigation. Methods: We established human cell model systems in lung (airway and distal lung epithelial cells), heart (pluripotent stem cell-derived (PSC-) cardiomyocytes), and brain (PSC-astrocytes) cell types and subsequently evaluated ANDV, HTNV and SNV tropisms. Transcriptomic, lipidomic and bioinformatic data analyses were performed to identify the molecular pathogenic mechanisms of viruses in different cell types. This cell-based infection system was utilized to establish a drug testing platform and pharmacogenomic comparisons. Results: ANDV showed broad tropism for all cell types assessed. HTNV replication was predominantly observed in heart and brain cells. ANDV efficiently replicated in human and mouse 3D distal lung organoids. Transcriptomic analysis showed that ANDV infection resulted in pronounced inflammatory response and downregulation of cholesterol biosynthesis pathway in lung cells. Lipidomic profiling revealed that ANDV-infected cells showed reduced level of cholesterol esters and triglycerides. Further analysis of pathway-based molecular signatures showed that, compared to SNV and HTNV, ANDV infection caused drastic lung cell injury responses. A selective drug screening identified STING agonists, nucleoside analogues and plant-derived compounds that inhibited ANDV viral infection and rescued cellular metabolism. In line with experimental results, transcriptome data shows that the least number of total and unique differentially expressed genes were identified in urolithin B- and favipiravir-treated cells, confirming the higher efficiency of these two drugs in inhibiting ANDV, resulting in host cell ability to balance gene expression to establish proper cell functioning. Conclusions: Overall, our study describes advanced human PSC-derived model systems and systems-level transcriptomics and lipidomic data to better understand Old and New World hantaviral tropism, as well as drug candidates that can be further assessed for potential rapid deployment in the event of a pandemic.

8.
Nat Commun ; 14(1): 2379, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185252

RESUMEN

The self-assembly of the Nucleocapsid protein (NCAP) of SARS-CoV-2 is crucial for its function. Computational analysis of the amino acid sequence of NCAP reveals low-complexity domains (LCDs) akin to LCDs in other proteins known to self-assemble as phase separation droplets and amyloid fibrils. Previous reports have described NCAP's propensity to phase-separate. Here we show that the central LCD of NCAP is capable of both, phase separation and amyloid formation. Within this central LCD we identified three adhesive segments and determined the atomic structure of the fibrils formed by each. Those structures guided the design of G12, a peptide that interferes with the self-assembly of NCAP and demonstrates antiviral activity in SARS-CoV-2 infected cells. Our work, therefore, demonstrates the amyloid form of the central LCD of NCAP and suggests that amyloidogenic segments of NCAP could be targeted for drug development.


Asunto(s)
Amiloide , COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Humanos , Amiloide/metabolismo , Proteínas Amiloidogénicas , Proteínas de la Nucleocápside , Péptidos/química , Dominios Proteicos , SARS-CoV-2/metabolismo
9.
Cell Rep Med ; 4(5): 101024, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37119814

RESUMEN

RNA viruses continue to remain a threat for potential pandemics due to their rapid evolution. Potentiating host antiviral pathways to prevent or limit viral infections is a promising strategy. Thus, by testing a library of innate immune agonists targeting pathogen recognition receptors, we observe that Toll-like receptor 3 (TLR3), stimulator of interferon genes (STING), TLR8, and Dectin-1 ligands inhibit arboviruses, Chikungunya virus (CHIKV), West Nile virus, and Zika virus to varying degrees. STING agonists (cAIMP, diABZI, and 2',3'-cGAMP) and Dectin-1 agonist scleroglucan demonstrate the most potent, broad-spectrum antiviral function. Furthermore, STING agonists inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and enterovirus-D68 (EV-D68) infection in cardiomyocytes. Transcriptome analysis reveals that cAIMP treatment rescue cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provides protection against CHIKV in a chronic CHIKV-arthritis mouse model. Our study describes innate immune signaling circuits crucial for RNA virus replication and identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses.


Asunto(s)
COVID-19 , Virus Chikungunya , Virus ARN , Infección por el Virus Zika , Virus Zika , Animales , Ratones , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Virus Chikungunya/fisiología , Inmunidad Innata
10.
Viruses ; 15(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36680182

RESUMEN

Zika virus (ZIKV) causes microcephaly and congenital eye disease. The cellular and molecular basis of congenital ZIKV infection are not well understood. Here, we utilized a biologically relevant cell-based system of human fetal retinal pigment epithelial cells (FRPEs), hiPSC-derived retinal stem cells (iRSCs), and retinal organoids to investigate ZIKV-mediated ocular cell injury processes. Our data show that FRPEs were highly susceptible to ZIKV infection exhibiting increased apoptosis, whereas iRSCs showed reduced susceptibility. Detailed transcriptomics and proteomics analyses of infected FRPEs were performed. Nucleoside analogue drug treatment inhibited ZIKV replication. Retinal organoids were susceptible to ZIKV infection. The Asian genotype ZIKV exhibited higher infectivity, induced profound inflammatory response, and dysregulated transcription factors involved in retinal organoid differentiation. Collectively, our study shows that ZIKV affects ocular cells at different developmental stages resulting in cellular injury and death, further providing molecular insight into the pathogenesis of congenital eye disease.


Asunto(s)
Oftalmopatías , Células Madre Pluripotentes Inducidas , Infección por el Virus Zika , Virus Zika , Humanos , Virus Zika/fisiología , Retina/patología , Replicación Viral , Organoides , Células Epiteliales/patología , Pigmentos Retinianos/metabolismo
11.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711787

RESUMEN

RNA viruses continue to remain a clear and present threat for potential pandemics due to their rapid evolution. To mitigate their impact, we urgently require antiviral agents that can inhibit multiple families of disease-causing viruses, such as arthropod-borne and respiratory pathogens. Potentiating host antiviral pathways can prevent or limit viral infections before escalating into a major outbreak. Therefore, it is critical to identify broad-spectrum antiviral agents. We have tested a small library of innate immune agonists targeting pathogen recognition receptors, including TLRs, STING, NOD, Dectin and cytosolic DNA or RNA sensors. We observed that TLR3, STING, TLR8 and Dectin-1 ligands inhibited arboviruses, Chikungunya virus (CHIKV), West Nile virus (WNV) and Zika virus, to varying degrees. Cyclic dinucleotide (CDN) STING agonists, such as cAIMP, diABZI, and 2',3'-cGAMP, and Dectin-1 agonist scleroglucan, demonstrated the most potent, broad-spectrum antiviral function. Comparative transcriptome analysis revealed that CHIKV-infected cells had larger number of differentially expressed genes than of WNV and ZIKV. Furthermore, gene expression analysis showed that cAIMP treatment rescued cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provided protection against CHIKV in a CHIKV-arthritis mouse model. Cardioprotective effects of synthetic STING ligands against CHIKV, WNV, SARS-CoV-2 and enterovirus D68 (EV-D68) infections were demonstrated using human cardiomyocytes. Interestingly, the direct-acting antiviral drug remdesivir, a nucleoside analogue, was not effective against CHIKV and WNV, but exhibited potent antiviral effects against SARS-CoV-2, RSV (respiratory syncytial virus), and EV-D68. Our study identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses, which can be rapidly deployed to prevent or mitigate future pandemics.

12.
J Infect Dis ; 227(2): 236-245, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36082433

RESUMEN

BACKGROUND: There are limited data on how coronavirus disease 2019 (COVID-19) severity, timing of infection, and subsequent vaccination impact transplacental transfer and persistence of maternal and infant antibodies. METHODS: In a longitudinal cohort of pregnant women with polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, maternal/infant sera were collected at enrollment, delivery/birth, and 6 months. Anti-SARS-CoV-2 spike immunoglobulin (Ig)G, IgM, and IgA were measured by enzyme-linked immunosorbent assay. RESULTS: Two-hundred fifty-six pregnant women and 135 infants were enrolled; 148 maternal and 122 neonatal specimens were collected at delivery/birth; 45 maternal and 48 infant specimens were collected at 6 months. Sixty-eight percent of women produced all anti-SARS-CoV-2 isotypes at delivery (IgG, IgM, IgA); 96% had at least 1 isotype. Symptomatic disease and vaccination before delivery were associated with higher maternal IgG at labor and delivery. Detectable IgG in infants dropped from 78% at birth to 52% at 6 months. In the multivariate analysis evaluating factors associated with detectable IgG in infants at delivery, significant predictors were 3rd trimester infection (odds ratio [OR] = 4.0), mild/moderate disease (OR = 4.8), severe/critical disease (OR = 6.3), and maternal vaccination before delivery (OR = 18.8). No factors were significant in the multivariate analysis at 6 months postpartum. CONCLUSIONS: Vaccination in pregnancy post-COVID-19 recovery is a strategy for boosting antibodies in mother-infant dyads.


Asunto(s)
COVID-19 , Madres , Embarazo , Recién Nacido , Femenino , Lactante , Humanos , SARS-CoV-2 , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M , Anticuerpos Antivirales
13.
Viruses ; 14(11)2022 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-36366559

RESUMEN

New variants of SARS-CoV-2 continue to evolve. The novel SARS-CoV-2 variant of concern (VOC) B.1.1.529 (Omicron) was particularly menacing due to the presence of numerous consequential mutations. In this study, we reviewed about 12 million SARS-CoV-2 genomic and associated metadata using extensive bioinformatic approaches to understand how evolutionary and mutational changes affect Omicron variant properties. Subsampled global data based analysis of molecular clock in the phylogenetic tree showed 29.56 substitutions per year as the evolutionary rate of five VOCs. We observed extensive mutational changes in the spike structural protein of the Omicron variant. A total of 20% of 7230 amino acid and structural changes exclusive to Omicron's spike protein were detected in the receptor binding domain (RBD), suggesting differential selection pressures exerted during evolution. Analyzing key drug targets revealed mutation-derived differential binding affinities between Delta and Omicron variants. Nine single-RBD substitutions were detected within the binding site of approved therapeutic monoclonal antibodies. T-cell epitope prediction revealed eight immunologically important functional hotspots in three conserved non-structural proteins. A universal vaccine based on these regions may likely protect against all these SARS-CoV-2 variants. We observed key structural changes in the spike protein, which decreased binding affinities, indicating that these changes may help the virus escape host cellular immunity. These findings emphasize the need for continuous genomic surveillance of SARS-CoV-2 to better understand how novel mutations may impact viral spread and disease outcome.


Asunto(s)
Antivirales , COVID-19 , Evasión Inmune , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/inmunología , COVID-19/virología , Mutación , Filogenia , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral/genética
14.
PLoS Biol ; 20(11): e3001851, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36346780

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited. In this study, we have uncovered a critical role for the evolutionarily conserved Hippo signaling pathway in COVID-19 pathogenesis. Given the complexity of COVID-19-associated cell injury and immunopathogenesis processes, we investigated Hippo pathway dynamics in SARS-CoV-2 infection by utilizing COVID-19 lung samples and human cell models based on pluripotent stem cell-derived cardiomyocytes (PSC-CMs) and human primary lung air-liquid interface (ALI) cultures. SARS-CoV-2 infection caused activation of the Hippo signaling pathway in COVID-19 lung and in vitro cultures. Both parental and Delta variant of concern (VOC) strains induced Hippo pathway. The chemical inhibition and gene knockdown of upstream kinases MST1/2 and LATS1 resulted in significantly enhanced SARS-CoV-2 replication, indicating antiviral roles. Verteporfin, a pharmacological inhibitor of the Hippo pathway downstream transactivator, YAP, significantly reduced virus replication. These results delineate a direct antiviral role for Hippo signaling in SARS-CoV-2 infection and the potential for this pathway to be pharmacologically targeted to treat COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vía de Señalización Hippo , Antivirales/farmacología
15.
Microbiol Spectr ; 10(5): e0113722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36169338

RESUMEN

Zika virus (ZIKV), a mosquito-borne human pathogen, causes dire congenital brain developmental abnormalities in children of infected mothers. The global health crisis precipitated by this virus has led to a concerted effort to develop effective therapies and prophylactic measures although, unfortunately, not very successfully. The error-prone nature of RNA viral genome replication tends to promote evolution of novel viral strains, which could cause epidemics and pandemics. As such, our objective was to develop a safe and effective replication-deficient ZIKV vector-based vaccine candidate. We approached this by generating a ZIKV vector containing only the nonstructural (NS) 5'-untranslated (UTR)-NS-3' UTR sequences, with the structural proteins capsid (C), precursor membrane (prM), and envelope (E) (CprME) used as a packaging system. We efficiently packaged replication-deficient Zika vaccine particles in human producer cells and verified antigen expression in vitro. In vivo studies showed that, after inoculation in neonatal mice, the Zika vaccine candidate (ZVAX) was safe and did not produce any replication-competent revertant viruses. Immunization of adult, nonpregnant mice showed that ZVAX protected mice from lethal challenge by limiting viral replication. We then evaluated the safety and efficacy of ZVAX in pregnant mice, where it was shown to provide efficient maternal and fetal protection against Zika disease. Mass cytometry analysis showed that vaccinated pregnant animals had high levels of splenic CD8+ T cells and effector memory T cell responses with reduced proinflammatory cell responses, suggesting that endogenous expression of NS proteins by ZVAX induced cellular immunity against ZIKV NS proteins. We also investigated humoral immunity against ZIKV, which is potentially induced by viral proteins present in ZVAX virions. We found no significant difference in neutralizing antibody titer in vaccinated or unvaccinated challenged animals; therefore, it is likely that cellular immunity plays a major role in ZVAX-mediated protection against ZIKV infection. In conclusion, we demonstrated ZVAX as an effective inducer of protective immunity against ZIKV, which can be further evaluated for potential prophylactic application in humans. IMPORTANCE This research is important as it strives to address the critical need for effective prophylactic measures against the outbreak of Zika virus (ZIKV) and outlines an important vaccine technology that could potentially be used to induce immune responses against other pandemic-potential viruses.


Asunto(s)
Vacunas Virales , Infección por el Virus Zika , Virus Zika , Embarazo , Femenino , Niño , Ratones , Humanos , Animales , Virus Zika/genética , Infección por el Virus Zika/prevención & control , Linfocitos T CD8-positivos , Regiones no Traducidas 3' , Vacunas Virales/genética , Anticuerpos Antivirales , Proteínas del Envoltorio Viral/genética , Mosquitos Vectores , Anticuerpos Neutralizantes , Modelos Animales de Enfermedad
16.
bioRxiv ; 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35441167

RESUMEN

SARS-CoV-2, responsible for the COVID-19 pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited. In this study, we have uncovered a critical role for the evolutionarily conserved Hippo signaling pathway in COVID-19 pathogenesis. Given the complexity of COVID-19 associated cell injury and immunopathogenesis processes, we investigated Hippo pathway dynamics in SARS-CoV-2 infection by utilizing COVID-19 lung samples, and human cell models based on pluripotent stem cell-derived cardiomyocytes (PSC-CMs) and human primary lung air-liquid interface (ALI) cultures. SARS-CoV-2 infection caused activation of the Hippo signaling pathway in COVID-19 lung and in vitro cultures. Both parental and Delta variant of concern (VOC) strains induced Hippo pathway. The chemical inhibition and gene knockdown of upstream kinases MST1/2 and LATS1 resulted in significantly enhanced SARS-CoV-2 replication, indicating antiviral roles. Verteporfin a pharmacological inhibitor of the Hippo pathway downstream transactivator, YAP, significantly reduced virus replication. These results delineate a direct antiviral role for Hippo signaling in SARS-CoV-2 infection and the potential for this pathway to be pharmacologically targeted to treat COVID-19.

17.
Funct Integr Genomics ; 22(4): 1-32, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35416560

RESUMEN

Among the annelids, earthworms are renowned for their phenomenal ability to regenerate the lost segments. The adult earthworm Eudrilus eugeniae contains 120 segments and the body segments of the earthworm are divided into pre-clitellar, clitellar and post-clitellar segments. The present study denoted that clitellum plays vital role in the successful regeneration of the species. We have performed histological studies to identify among the three skin layers of the earthworm, which cellular layer supports the blastema formation and regeneration of the species. The histological evidences denoted that the proliferation of the longitudinal cell layer at the amputation site is crucial for the successful regeneration of the earthworm and it takes place only in the presence of an intact clitellum. Besides we have performed clitellar transcriptome analysis of the earthworm Eudrilus eugeniae to monitor the key differentially expressed genes and their associated functions and pathways controlling the clitellar tissue changes during both anterior and posterior regeneration of the earthworm. A total of 4707 differentially expressed genes (DEGs) were identified between the control clitellum and clitellum of anterior regenerated earthworms and 4343 DEGs were detected between the control clitellum and clitellum of posterior regenerated earthworms. The functional enrichment analysis confirmed the genes regulating the muscle mass shape and structure were significantly downregulated and the genes associated with response to starvation and anterior-posterior axis specification were significantly upregulated in the clitellar tissue during both anterior and posterior regeneration of the earthworm. The RNA sequencing data of clitellum and the comparative transcriptomic analysis were helpful to understand the complex regeneration process of the earthworm.


Asunto(s)
Oligoquetos , Animales , Perfilación de la Expresión Génica , Oligoquetos/genética , Oligoquetos/metabolismo
18.
Stem Cell Res Ther ; 13(1): 112, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35313965

RESUMEN

BACKGROUND: New COVID-19 treatments are desperately needed as case numbers continue to rise and emergent strains threaten vaccine efficacy. Cell therapy has revolutionized cancer treatment and holds much promise in combatting infectious disease, including COVID-19. Invariant natural killer T (iNKT) cells are a rare subset of T cells with potent antiviral and immunoregulatory functions and an excellent safety profile. Current iNKT cell strategies are hindered by the extremely low presence of iNKT cells, and we have developed a platform to overcome this critical limitation. METHODS: We produced allogeneic HSC-engineered iNKT (AlloHSC-iNKT) cells through TCR engineering of human cord blood CD34+ hematopoietic stem cells (HSCs) and differentiation of these HSCs into iNKT cells in an Ex Vivo HSC-Derived iNKT Cell Culture. We then established in vitro SARS-CoV-2 infection assays to assess AlloHSC-iNKT cell antiviral and anti-hyperinflammation functions. Lastly, using in vitro and in vivo preclinical models, we evaluated AlloHSC-iNKT cell safety and immunogenicity for off-the-shelf application. RESULTS: We reliably generated AlloHSC-iNKT cells at high-yield and of high-purity; these resulting cells closely resembled endogenous human iNKT cells in phenotypes and functionalities. In cell culture, AlloHSC-iNKT cells directly killed SARS-CoV-2 infected cells and also selectively eliminated SARS-CoV-2 infection-stimulated inflammatory monocytes. In an in vitro mixed lymphocyte reaction (MLR) assay and an NSG mouse xenograft model, AlloHSC-iNKT cells were resistant to T cell-mediated alloreaction and did not cause GvHD. CONCLUSIONS: Here, we report a method to robustly produce therapeutic levels of AlloHSC-iNKT cells. Preclinical studies showed that these AlloHSC-iNKT cells closely resembled endogenous human iNKT cells, could reduce SARS-CoV-2 virus infection load and mitigate virus infection-induced hyperinflammation, and meanwhile were free of GvHD-risk and resistant to T cell-mediated allorejection. These results support the development of AlloHSC-iNKT cells as a promising off-the-shelf cell product for treating COVID-19; such a cell product has the potential to target the new emerging SARS-CoV-2 variants as well as the future new emerging viruses.


Asunto(s)
COVID-19 , Células T Asesinas Naturales , Animales , COVID-19/terapia , Células Madre Hematopoyéticas , Humanos , Ratones , SARS-CoV-2
19.
bioRxiv ; 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35233569

RESUMEN

To date, there is no effective oral antiviral against SARS-CoV-2 that is also anti-inflammatory. Herein, we show that the mitochondrial antioxidant mitoquinone/mitoquinol mesylate (Mito-MES), a dietary supplement, has potent antiviral activity against SARS-CoV-2 and its variants of concern in vitro and in vivo . Mito-MES had nanomolar in vitro antiviral potency against the Beta and Delta SARS-CoV-2 variants as well as the murine hepatitis virus (MHV-A59). Mito-MES given in SARS-CoV-2 infected K18-hACE2 mice through oral gavage reduced viral titer by nearly 4 log units relative to the vehicle group. We found in vitro that the antiviral effect of Mito-MES is attributable to its hydrophobic dTPP+ moiety and its combined effects scavenging reactive oxygen species (ROS), activating Nrf2 and increasing the host defense proteins TOM70 and MX1. Mito-MES was efficacious reducing increase in cleaved caspase-3 and inflammation induced by SARS-CoV2 infection both in lung epithelial cells and a transgenic mouse model of COVID-19. Mito-MES reduced production of IL-6 by SARS-CoV-2 infected epithelial cells through its antioxidant properties (Nrf2 agonist, coenzyme Q10 moiety) and the dTPP moiety. Given established safety of Mito-MES in humans, our results suggest that Mito-MES may represent a rapidly applicable therapeutic strategy that can be added in the therapeutic arsenal against COVID-19. Its potential long-term use by humans as diet supplement could help control the SARS-CoV-2 pandemic, especially in the setting of rapidly emerging SARS-CoV-2 variants that may compromise vaccine efficacy. One-Sentence Summary: Mitoquinone/mitoquinol mesylate has potent antiviral and anti-inflammatory activity in preclinical models of SARS-CoV-2 infection.

20.
Mol Biol Rep ; 49(6): 4225-4236, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35211863

RESUMEN

BACKGROUND: The arrestin domain containing proteins (ARRDCs) are crucial adaptor proteins assist in signal transduction and regulation of sensory physiology. The molecular localization of the ARRDC gene has been confined mainly to the mammalian system while in invertebrates the expression pattern was not addressed significantly. The present study reports the identification, tissue specific expression and functional characterization of an ARRDC transcript in earthworm, Eudrilus eugeniae. METHODS AND RESULTS: The coding region of earthworm ARRDC transcript was 1146 bp in length and encoded a protein of 381 amino acid residues. The worm ARRDC protein consists of conserved N-terminal and C-terminal regions and showed significant homology with the ARRDC3 sequence of other species. The tissue specific expression analysis through whole mount in-situ hybridization denoted the expression of ARRDC transcript in the central nervous system of the worm which includes cerebral ganglion and ventral nerve cord. Besides, the expression of ARRDC gene was observed in the epidermal region of earthworm skin. The functional characterization of ARRDC gene was assessed through siRNA silencing and the gene was found to play key role in the light sensing ability and photophobic movement of the worm. CONCLUSIONS: The neuronal and dermal expression patterns of ARRDC gene and its functional characterization hypothesized the role of the gene in assisting the photosensory cells to regulate the process of photoreception and phototransduction in the worm.


Asunto(s)
Oligoquetos , Animales , Arrestina/genética , Arrestina/metabolismo , Hibridación in Situ , Mamíferos/metabolismo , Oligoquetos/genética , Oligoquetos/metabolismo , Proteínas/genética , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA